| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnprfval1 | Structured version Visualization version GIF version | ||
| Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.) |
| Ref | Expression |
|---|---|
| psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
| psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
| psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnprfval1 | ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
| 2 | prex 5379 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
| 3 | 1, 2 | eqeltri 2829 | . . . . . 6 ⊢ 𝐷 ∈ V |
| 4 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 5 | 4 | symgid 19321 | . . . . . 6 ⊢ (𝐷 ∈ V → ( I ↾ 𝐷) = (0g‘𝐺)) |
| 6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐷) = (0g‘𝐺) |
| 7 | 6 | gsum0 18600 | . . . 4 ⊢ (𝐺 Σg ∅) = ( I ↾ 𝐷) |
| 8 | reseq2 5930 | . . . . . 6 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = ( I ↾ {1, 2})) | |
| 9 | 1ex 11119 | . . . . . . 7 ⊢ 1 ∈ V | |
| 10 | 2nn 12209 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 11 | residpr 7085 | . . . . . . 7 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉}) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . 6 ⊢ ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉} |
| 13 | 8, 12 | eqtrdi 2784 | . . . . 5 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉}) |
| 14 | 1, 13 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉} |
| 15 | 7, 14 | eqtr2i 2757 | . . 3 ⊢ {〈1, 1〉, 〈2, 2〉} = (𝐺 Σg ∅) |
| 16 | 15 | fveq2i 6834 | . 2 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = (𝑁‘(𝐺 Σg ∅)) |
| 17 | wrd0 14453 | . . 3 ⊢ ∅ ∈ Word 𝑇 | |
| 18 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 19 | psgnprfval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 20 | 4, 18, 19 | psgnvalii 19429 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
| 21 | 3, 17, 20 | mp2an 692 | . 2 ⊢ (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)) |
| 22 | hash0 14281 | . . . 4 ⊢ (♯‘∅) = 0 | |
| 23 | 22 | oveq2i 7366 | . . 3 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
| 24 | neg1cn 12121 | . . . 4 ⊢ -1 ∈ ℂ | |
| 25 | exp0 13979 | . . . 4 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 26 | 24, 25 | ax-mp 5 | . . 3 ⊢ (-1↑0) = 1 |
| 27 | 23, 26 | eqtri 2756 | . 2 ⊢ (-1↑(♯‘∅)) = 1 |
| 28 | 16, 21, 27 | 3eqtri 2760 | 1 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 {cpr 4579 〈cop 4583 I cid 5515 ran crn 5622 ↾ cres 5623 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 0cc0 11017 1c1 11018 -cneg 11356 ℕcn 12136 2c2 12191 ↑cexp 13975 ♯chash 14244 Word cword 14427 Basecbs 17127 0gc0g 17350 Σg cgsu 17351 SymGrpcsymg 19289 pmTrspcpmtr 19361 pmSgncpsgn 19409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-seq 13916 df-exp 13976 df-hash 14245 df-word 14428 df-lsw 14477 df-concat 14485 df-s1 14511 df-substr 14556 df-pfx 14586 df-splice 14664 df-reverse 14673 df-s2 14762 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-tset 17187 df-0g 17352 df-gsum 17353 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-efmnd 18785 df-grp 18857 df-minusg 18858 df-subg 19044 df-ghm 19133 df-gim 19179 df-oppg 19266 df-symg 19290 df-pmtr 19362 df-psgn 19411 |
| This theorem is referenced by: m2detleiblem1 22559 m2detleiblem5 22560 |
| Copyright terms: Public domain | W3C validator |