MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnprfval1 Structured version   Visualization version   GIF version

Theorem psgnprfval1 19175
Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.)
Hypotheses
Ref Expression
psgnprfval.0 𝐷 = {1, 2}
psgnprfval.g 𝐺 = (SymGrp‘𝐷)
psgnprfval.b 𝐵 = (Base‘𝐺)
psgnprfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnprfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnprfval1 (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1

Proof of Theorem psgnprfval1
StepHypRef Expression
1 psgnprfval.0 . . . . . . 7 𝐷 = {1, 2}
2 prex 5364 . . . . . . 7 {1, 2} ∈ V
31, 2eqeltri 2833 . . . . . 6 𝐷 ∈ V
4 psgnprfval.g . . . . . . 7 𝐺 = (SymGrp‘𝐷)
54symgid 19054 . . . . . 6 (𝐷 ∈ V → ( I ↾ 𝐷) = (0g𝐺))
63, 5ax-mp 5 . . . . 5 ( I ↾ 𝐷) = (0g𝐺)
76gsum0 18413 . . . 4 (𝐺 Σg ∅) = ( I ↾ 𝐷)
8 reseq2 5898 . . . . . 6 (𝐷 = {1, 2} → ( I ↾ 𝐷) = ( I ↾ {1, 2}))
9 1ex 11017 . . . . . . 7 1 ∈ V
10 2nn 12092 . . . . . . 7 2 ∈ ℕ
11 residpr 7047 . . . . . . 7 ((1 ∈ V ∧ 2 ∈ ℕ) → ( I ↾ {1, 2}) = {⟨1, 1⟩, ⟨2, 2⟩})
129, 10, 11mp2an 690 . . . . . 6 ( I ↾ {1, 2}) = {⟨1, 1⟩, ⟨2, 2⟩}
138, 12eqtrdi 2792 . . . . 5 (𝐷 = {1, 2} → ( I ↾ 𝐷) = {⟨1, 1⟩, ⟨2, 2⟩})
141, 13ax-mp 5 . . . 4 ( I ↾ 𝐷) = {⟨1, 1⟩, ⟨2, 2⟩}
157, 14eqtr2i 2765 . . 3 {⟨1, 1⟩, ⟨2, 2⟩} = (𝐺 Σg ∅)
1615fveq2i 6807 . 2 (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = (𝑁‘(𝐺 Σg ∅))
17 wrd0 14287 . . 3 ∅ ∈ Word 𝑇
18 psgnprfval.t . . . 4 𝑇 = ran (pmTrsp‘𝐷)
19 psgnprfval.n . . . 4 𝑁 = (pmSgn‘𝐷)
204, 18, 19psgnvalii 19162 . . 3 ((𝐷 ∈ V ∧ ∅ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)))
213, 17, 20mp2an 690 . 2 (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))
22 hash0 14127 . . . 4 (♯‘∅) = 0
2322oveq2i 7318 . . 3 (-1↑(♯‘∅)) = (-1↑0)
24 neg1cn 12133 . . . 4 -1 ∈ ℂ
25 exp0 13832 . . . 4 (-1 ∈ ℂ → (-1↑0) = 1)
2624, 25ax-mp 5 . . 3 (-1↑0) = 1
2723, 26eqtri 2764 . 2 (-1↑(♯‘∅)) = 1
2816, 21, 273eqtri 2768 1 (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  Vcvv 3437  c0 4262  {cpr 4567  cop 4571   I cid 5499  ran crn 5601  cres 5602  cfv 6458  (class class class)co 7307  cc 10915  0cc0 10917  1c1 10918  -cneg 11252  cn 12019  2c2 12074  cexp 13828  chash 14090  Word cword 14262  Basecbs 16957  0gc0g 17195   Σg cgsu 17196  SymGrpcsymg 19019  pmTrspcpmtr 19094  pmSgncpsgn 19142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-xor 1508  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-ot 4574  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-tpos 8073  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-xnn0 12352  df-z 12366  df-uz 12629  df-rp 12777  df-fz 13286  df-fzo 13429  df-seq 13768  df-exp 13829  df-hash 14091  df-word 14263  df-lsw 14311  df-concat 14319  df-s1 14346  df-substr 14399  df-pfx 14429  df-splice 14508  df-reverse 14517  df-s2 14606  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-tset 17026  df-0g 17197  df-gsum 17198  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-mhm 18475  df-submnd 18476  df-efmnd 18553  df-grp 18625  df-minusg 18626  df-subg 18797  df-ghm 18877  df-gim 18920  df-oppg 18995  df-symg 19020  df-pmtr 19095  df-psgn 19144
This theorem is referenced by:  m2detleiblem1  21818  m2detleiblem5  21819
  Copyright terms: Public domain W3C validator