Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnprfval1 | Structured version Visualization version GIF version |
Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.) |
Ref | Expression |
---|---|
psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnprfval1 | ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
2 | prex 5364 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
3 | 1, 2 | eqeltri 2833 | . . . . . 6 ⊢ 𝐷 ∈ V |
4 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
5 | 4 | symgid 19054 | . . . . . 6 ⊢ (𝐷 ∈ V → ( I ↾ 𝐷) = (0g‘𝐺)) |
6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐷) = (0g‘𝐺) |
7 | 6 | gsum0 18413 | . . . 4 ⊢ (𝐺 Σg ∅) = ( I ↾ 𝐷) |
8 | reseq2 5898 | . . . . . 6 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = ( I ↾ {1, 2})) | |
9 | 1ex 11017 | . . . . . . 7 ⊢ 1 ∈ V | |
10 | 2nn 12092 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
11 | residpr 7047 | . . . . . . 7 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉}) | |
12 | 9, 10, 11 | mp2an 690 | . . . . . 6 ⊢ ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉} |
13 | 8, 12 | eqtrdi 2792 | . . . . 5 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉}) |
14 | 1, 13 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉} |
15 | 7, 14 | eqtr2i 2765 | . . 3 ⊢ {〈1, 1〉, 〈2, 2〉} = (𝐺 Σg ∅) |
16 | 15 | fveq2i 6807 | . 2 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = (𝑁‘(𝐺 Σg ∅)) |
17 | wrd0 14287 | . . 3 ⊢ ∅ ∈ Word 𝑇 | |
18 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
19 | psgnprfval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
20 | 4, 18, 19 | psgnvalii 19162 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
21 | 3, 17, 20 | mp2an 690 | . 2 ⊢ (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)) |
22 | hash0 14127 | . . . 4 ⊢ (♯‘∅) = 0 | |
23 | 22 | oveq2i 7318 | . . 3 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
24 | neg1cn 12133 | . . . 4 ⊢ -1 ∈ ℂ | |
25 | exp0 13832 | . . . 4 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
26 | 24, 25 | ax-mp 5 | . . 3 ⊢ (-1↑0) = 1 |
27 | 23, 26 | eqtri 2764 | . 2 ⊢ (-1↑(♯‘∅)) = 1 |
28 | 16, 21, 27 | 3eqtri 2768 | 1 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∅c0 4262 {cpr 4567 〈cop 4571 I cid 5499 ran crn 5601 ↾ cres 5602 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 0cc0 10917 1c1 10918 -cneg 11252 ℕcn 12019 2c2 12074 ↑cexp 13828 ♯chash 14090 Word cword 14262 Basecbs 16957 0gc0g 17195 Σg cgsu 17196 SymGrpcsymg 19019 pmTrspcpmtr 19094 pmSgncpsgn 19142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-xor 1508 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-ot 4574 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-tpos 8073 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-xnn0 12352 df-z 12366 df-uz 12629 df-rp 12777 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-word 14263 df-lsw 14311 df-concat 14319 df-s1 14346 df-substr 14399 df-pfx 14429 df-splice 14508 df-reverse 14517 df-s2 14606 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-tset 17026 df-0g 17197 df-gsum 17198 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-submnd 18476 df-efmnd 18553 df-grp 18625 df-minusg 18626 df-subg 18797 df-ghm 18877 df-gim 18920 df-oppg 18995 df-symg 19020 df-pmtr 19095 df-psgn 19144 |
This theorem is referenced by: m2detleiblem1 21818 m2detleiblem5 21819 |
Copyright terms: Public domain | W3C validator |