Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnprfval1 | Structured version Visualization version GIF version |
Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.) |
Ref | Expression |
---|---|
psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnprfval1 | ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
2 | prex 5358 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
3 | 1, 2 | eqeltri 2836 | . . . . . 6 ⊢ 𝐷 ∈ V |
4 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
5 | 4 | symgid 18990 | . . . . . 6 ⊢ (𝐷 ∈ V → ( I ↾ 𝐷) = (0g‘𝐺)) |
6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐷) = (0g‘𝐺) |
7 | 6 | gsum0 18349 | . . . 4 ⊢ (𝐺 Σg ∅) = ( I ↾ 𝐷) |
8 | reseq2 5883 | . . . . . 6 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = ( I ↾ {1, 2})) | |
9 | 1ex 10955 | . . . . . . 7 ⊢ 1 ∈ V | |
10 | 2nn 12029 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
11 | residpr 7009 | . . . . . . 7 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉}) | |
12 | 9, 10, 11 | mp2an 688 | . . . . . 6 ⊢ ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉} |
13 | 8, 12 | eqtrdi 2795 | . . . . 5 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉}) |
14 | 1, 13 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉} |
15 | 7, 14 | eqtr2i 2768 | . . 3 ⊢ {〈1, 1〉, 〈2, 2〉} = (𝐺 Σg ∅) |
16 | 15 | fveq2i 6771 | . 2 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = (𝑁‘(𝐺 Σg ∅)) |
17 | wrd0 14223 | . . 3 ⊢ ∅ ∈ Word 𝑇 | |
18 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
19 | psgnprfval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
20 | 4, 18, 19 | psgnvalii 19098 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
21 | 3, 17, 20 | mp2an 688 | . 2 ⊢ (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)) |
22 | hash0 14063 | . . . 4 ⊢ (♯‘∅) = 0 | |
23 | 22 | oveq2i 7279 | . . 3 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
24 | neg1cn 12070 | . . . 4 ⊢ -1 ∈ ℂ | |
25 | exp0 13767 | . . . 4 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
26 | 24, 25 | ax-mp 5 | . . 3 ⊢ (-1↑0) = 1 |
27 | 23, 26 | eqtri 2767 | . 2 ⊢ (-1↑(♯‘∅)) = 1 |
28 | 16, 21, 27 | 3eqtri 2771 | 1 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 {cpr 4568 〈cop 4572 I cid 5487 ran crn 5589 ↾ cres 5590 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 -cneg 11189 ℕcn 11956 2c2 12011 ↑cexp 13763 ♯chash 14025 Word cword 14198 Basecbs 16893 0gc0g 17131 Σg cgsu 17132 SymGrpcsymg 18955 pmTrspcpmtr 19030 pmSgncpsgn 19078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1506 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-ot 4575 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-hash 14026 df-word 14199 df-lsw 14247 df-concat 14255 df-s1 14282 df-substr 14335 df-pfx 14365 df-splice 14444 df-reverse 14453 df-s2 14542 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-tset 16962 df-0g 17133 df-gsum 17134 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-submnd 18412 df-efmnd 18489 df-grp 18561 df-minusg 18562 df-subg 18733 df-ghm 18813 df-gim 18856 df-oppg 18931 df-symg 18956 df-pmtr 19031 df-psgn 19080 |
This theorem is referenced by: m2detleiblem1 21754 m2detleiblem5 21755 |
Copyright terms: Public domain | W3C validator |