![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnprfval1 | Structured version Visualization version GIF version |
Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.) |
Ref | Expression |
---|---|
psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnprfval1 | ⊢ (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
2 | prex 5432 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
3 | 1, 2 | eqeltri 2829 | . . . . . 6 ⊢ 𝐷 ∈ V |
4 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
5 | 4 | symgid 19271 | . . . . . 6 ⊢ (𝐷 ∈ V → ( I ↾ 𝐷) = (0g‘𝐺)) |
6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐷) = (0g‘𝐺) |
7 | 6 | gsum0 18605 | . . . 4 ⊢ (𝐺 Σg ∅) = ( I ↾ 𝐷) |
8 | reseq2 5976 | . . . . . 6 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = ( I ↾ {1, 2})) | |
9 | 1ex 11212 | . . . . . . 7 ⊢ 1 ∈ V | |
10 | 2nn 12287 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
11 | residpr 7143 | . . . . . . 7 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → ( I ↾ {1, 2}) = {⟨1, 1⟩, ⟨2, 2⟩}) | |
12 | 9, 10, 11 | mp2an 690 | . . . . . 6 ⊢ ( I ↾ {1, 2}) = {⟨1, 1⟩, ⟨2, 2⟩} |
13 | 8, 12 | eqtrdi 2788 | . . . . 5 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = {⟨1, 1⟩, ⟨2, 2⟩}) |
14 | 1, 13 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐷) = {⟨1, 1⟩, ⟨2, 2⟩} |
15 | 7, 14 | eqtr2i 2761 | . . 3 ⊢ {⟨1, 1⟩, ⟨2, 2⟩} = (𝐺 Σg ∅) |
16 | 15 | fveq2i 6894 | . 2 ⊢ (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = (𝑁‘(𝐺 Σg ∅)) |
17 | wrd0 14491 | . . 3 ⊢ ∅ ∈ Word 𝑇 | |
18 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
19 | psgnprfval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
20 | 4, 18, 19 | psgnvalii 19379 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
21 | 3, 17, 20 | mp2an 690 | . 2 ⊢ (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)) |
22 | hash0 14329 | . . . 4 ⊢ (♯‘∅) = 0 | |
23 | 22 | oveq2i 7422 | . . 3 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
24 | neg1cn 12328 | . . . 4 ⊢ -1 ∈ ℂ | |
25 | exp0 14033 | . . . 4 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
26 | 24, 25 | ax-mp 5 | . . 3 ⊢ (-1↑0) = 1 |
27 | 23, 26 | eqtri 2760 | . 2 ⊢ (-1↑(♯‘∅)) = 1 |
28 | 16, 21, 27 | 3eqtri 2764 | 1 ⊢ (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4322 {cpr 4630 ⟨cop 4634 I cid 5573 ran crn 5677 ↾ cres 5678 ‘cfv 6543 (class class class)co 7411 ℂcc 11110 0cc0 11112 1c1 11113 -cneg 11447 ℕcn 12214 2c2 12269 ↑cexp 14029 ♯chash 14292 Word cword 14466 Basecbs 17146 0gc0g 17387 Σg cgsu 17388 SymGrpcsymg 19236 pmTrspcpmtr 19311 pmSgncpsgn 19359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-xnn0 12547 df-z 12561 df-uz 12825 df-rp 12977 df-fz 13487 df-fzo 13630 df-seq 13969 df-exp 14030 df-hash 14293 df-word 14467 df-lsw 14515 df-concat 14523 df-s1 14548 df-substr 14593 df-pfx 14623 df-splice 14702 df-reverse 14711 df-s2 14801 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-tset 17218 df-0g 17389 df-gsum 17390 df-mre 17532 df-mrc 17533 df-acs 17535 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-mhm 18673 df-submnd 18674 df-efmnd 18752 df-grp 18824 df-minusg 18825 df-subg 19005 df-ghm 19092 df-gim 19135 df-oppg 19212 df-symg 19237 df-pmtr 19312 df-psgn 19361 |
This theorem is referenced by: m2detleiblem1 22133 m2detleiblem5 22134 |
Copyright terms: Public domain | W3C validator |