| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnprfval1 | Structured version Visualization version GIF version | ||
| Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.) |
| Ref | Expression |
|---|---|
| psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
| psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
| psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnprfval1 | ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
| 2 | prex 5404 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
| 3 | 1, 2 | eqeltri 2829 | . . . . . 6 ⊢ 𝐷 ∈ V |
| 4 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 5 | 4 | symgid 19367 | . . . . . 6 ⊢ (𝐷 ∈ V → ( I ↾ 𝐷) = (0g‘𝐺)) |
| 6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐷) = (0g‘𝐺) |
| 7 | 6 | gsum0 18647 | . . . 4 ⊢ (𝐺 Σg ∅) = ( I ↾ 𝐷) |
| 8 | reseq2 5958 | . . . . . 6 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = ( I ↾ {1, 2})) | |
| 9 | 1ex 11223 | . . . . . . 7 ⊢ 1 ∈ V | |
| 10 | 2nn 12305 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 11 | residpr 7129 | . . . . . . 7 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉}) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . 6 ⊢ ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉} |
| 13 | 8, 12 | eqtrdi 2785 | . . . . 5 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉}) |
| 14 | 1, 13 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉} |
| 15 | 7, 14 | eqtr2i 2758 | . . 3 ⊢ {〈1, 1〉, 〈2, 2〉} = (𝐺 Σg ∅) |
| 16 | 15 | fveq2i 6875 | . 2 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = (𝑁‘(𝐺 Σg ∅)) |
| 17 | wrd0 14544 | . . 3 ⊢ ∅ ∈ Word 𝑇 | |
| 18 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 19 | psgnprfval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 20 | 4, 18, 19 | psgnvalii 19475 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
| 21 | 3, 17, 20 | mp2an 692 | . 2 ⊢ (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)) |
| 22 | hash0 14373 | . . . 4 ⊢ (♯‘∅) = 0 | |
| 23 | 22 | oveq2i 7410 | . . 3 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
| 24 | neg1cn 12346 | . . . 4 ⊢ -1 ∈ ℂ | |
| 25 | exp0 14072 | . . . 4 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 26 | 24, 25 | ax-mp 5 | . . 3 ⊢ (-1↑0) = 1 |
| 27 | 23, 26 | eqtri 2757 | . 2 ⊢ (-1↑(♯‘∅)) = 1 |
| 28 | 16, 21, 27 | 3eqtri 2761 | 1 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∅c0 4306 {cpr 4601 〈cop 4605 I cid 5544 ran crn 5652 ↾ cres 5653 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 0cc0 11121 1c1 11122 -cneg 11459 ℕcn 12232 2c2 12287 ↑cexp 14068 ♯chash 14336 Word cword 14519 Basecbs 17213 0gc0g 17438 Σg cgsu 17439 SymGrpcsymg 19335 pmTrspcpmtr 19407 pmSgncpsgn 19455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-tpos 8219 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-xnn0 12567 df-z 12581 df-uz 12845 df-rp 13001 df-fz 13514 df-fzo 13661 df-seq 14009 df-exp 14069 df-hash 14337 df-word 14520 df-lsw 14568 df-concat 14576 df-s1 14601 df-substr 14646 df-pfx 14676 df-splice 14755 df-reverse 14764 df-s2 14854 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-tset 17275 df-0g 17440 df-gsum 17441 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18746 df-submnd 18747 df-efmnd 18832 df-grp 18904 df-minusg 18905 df-subg 19091 df-ghm 19181 df-gim 19227 df-oppg 19314 df-symg 19336 df-pmtr 19408 df-psgn 19457 |
| This theorem is referenced by: m2detleiblem1 22547 m2detleiblem5 22548 |
| Copyright terms: Public domain | W3C validator |