MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnprfval1 Structured version   Visualization version   GIF version

Theorem psgnprfval1 19392
Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.)
Hypotheses
Ref Expression
psgnprfval.0 𝐷 = {1, 2}
psgnprfval.g 𝐺 = (SymGrp‘𝐷)
psgnprfval.b 𝐵 = (Base‘𝐺)
psgnprfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnprfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnprfval1 (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1

Proof of Theorem psgnprfval1
StepHypRef Expression
1 psgnprfval.0 . . . . . . 7 𝐷 = {1, 2}
2 prex 5432 . . . . . . 7 {1, 2} ∈ V
31, 2eqeltri 2829 . . . . . 6 𝐷 ∈ V
4 psgnprfval.g . . . . . . 7 𝐺 = (SymGrp‘𝐷)
54symgid 19271 . . . . . 6 (𝐷 ∈ V → ( I ↾ 𝐷) = (0g𝐺))
63, 5ax-mp 5 . . . . 5 ( I ↾ 𝐷) = (0g𝐺)
76gsum0 18605 . . . 4 (𝐺 Σg ∅) = ( I ↾ 𝐷)
8 reseq2 5976 . . . . . 6 (𝐷 = {1, 2} → ( I ↾ 𝐷) = ( I ↾ {1, 2}))
9 1ex 11212 . . . . . . 7 1 ∈ V
10 2nn 12287 . . . . . . 7 2 ∈ ℕ
11 residpr 7143 . . . . . . 7 ((1 ∈ V ∧ 2 ∈ ℕ) → ( I ↾ {1, 2}) = {⟨1, 1⟩, ⟨2, 2⟩})
129, 10, 11mp2an 690 . . . . . 6 ( I ↾ {1, 2}) = {⟨1, 1⟩, ⟨2, 2⟩}
138, 12eqtrdi 2788 . . . . 5 (𝐷 = {1, 2} → ( I ↾ 𝐷) = {⟨1, 1⟩, ⟨2, 2⟩})
141, 13ax-mp 5 . . . 4 ( I ↾ 𝐷) = {⟨1, 1⟩, ⟨2, 2⟩}
157, 14eqtr2i 2761 . . 3 {⟨1, 1⟩, ⟨2, 2⟩} = (𝐺 Σg ∅)
1615fveq2i 6894 . 2 (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = (𝑁‘(𝐺 Σg ∅))
17 wrd0 14491 . . 3 ∅ ∈ Word 𝑇
18 psgnprfval.t . . . 4 𝑇 = ran (pmTrsp‘𝐷)
19 psgnprfval.n . . . 4 𝑁 = (pmSgn‘𝐷)
204, 18, 19psgnvalii 19379 . . 3 ((𝐷 ∈ V ∧ ∅ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)))
213, 17, 20mp2an 690 . 2 (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))
22 hash0 14329 . . . 4 (♯‘∅) = 0
2322oveq2i 7422 . . 3 (-1↑(♯‘∅)) = (-1↑0)
24 neg1cn 12328 . . . 4 -1 ∈ ℂ
25 exp0 14033 . . . 4 (-1 ∈ ℂ → (-1↑0) = 1)
2624, 25ax-mp 5 . . 3 (-1↑0) = 1
2723, 26eqtri 2760 . 2 (-1↑(♯‘∅)) = 1
2816, 21, 273eqtri 2764 1 (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  Vcvv 3474  c0 4322  {cpr 4630  cop 4634   I cid 5573  ran crn 5677  cres 5678  cfv 6543  (class class class)co 7411  cc 11110  0cc0 11112  1c1 11113  -cneg 11447  cn 12214  2c2 12269  cexp 14029  chash 14292  Word cword 14466  Basecbs 17146  0gc0g 17387   Σg cgsu 17388  SymGrpcsymg 19236  pmTrspcpmtr 19311  pmSgncpsgn 19359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-rp 12977  df-fz 13487  df-fzo 13630  df-seq 13969  df-exp 14030  df-hash 14293  df-word 14467  df-lsw 14515  df-concat 14523  df-s1 14548  df-substr 14593  df-pfx 14623  df-splice 14702  df-reverse 14711  df-s2 14801  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-tset 17218  df-0g 17389  df-gsum 17390  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-mhm 18673  df-submnd 18674  df-efmnd 18752  df-grp 18824  df-minusg 18825  df-subg 19005  df-ghm 19092  df-gim 19135  df-oppg 19212  df-symg 19237  df-pmtr 19312  df-psgn 19361
This theorem is referenced by:  m2detleiblem1  22133  m2detleiblem5  22134
  Copyright terms: Public domain W3C validator