| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnprfval1 | Structured version Visualization version GIF version | ||
| Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.) |
| Ref | Expression |
|---|---|
| psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
| psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
| psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnprfval1 | ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
| 2 | prex 5370 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | . . . . . 6 ⊢ 𝐷 ∈ V |
| 4 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 5 | 4 | symgid 19308 | . . . . . 6 ⊢ (𝐷 ∈ V → ( I ↾ 𝐷) = (0g‘𝐺)) |
| 6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐷) = (0g‘𝐺) |
| 7 | 6 | gsum0 18587 | . . . 4 ⊢ (𝐺 Σg ∅) = ( I ↾ 𝐷) |
| 8 | reseq2 5918 | . . . . . 6 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = ( I ↾ {1, 2})) | |
| 9 | 1ex 11103 | . . . . . . 7 ⊢ 1 ∈ V | |
| 10 | 2nn 12193 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 11 | residpr 7071 | . . . . . . 7 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉}) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . . 6 ⊢ ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉} |
| 13 | 8, 12 | eqtrdi 2782 | . . . . 5 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉}) |
| 14 | 1, 13 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉} |
| 15 | 7, 14 | eqtr2i 2755 | . . 3 ⊢ {〈1, 1〉, 〈2, 2〉} = (𝐺 Σg ∅) |
| 16 | 15 | fveq2i 6820 | . 2 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = (𝑁‘(𝐺 Σg ∅)) |
| 17 | wrd0 14441 | . . 3 ⊢ ∅ ∈ Word 𝑇 | |
| 18 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 19 | psgnprfval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 20 | 4, 18, 19 | psgnvalii 19416 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
| 21 | 3, 17, 20 | mp2an 692 | . 2 ⊢ (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)) |
| 22 | hash0 14269 | . . . 4 ⊢ (♯‘∅) = 0 | |
| 23 | 22 | oveq2i 7352 | . . 3 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
| 24 | neg1cn 12105 | . . . 4 ⊢ -1 ∈ ℂ | |
| 25 | exp0 13967 | . . . 4 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 26 | 24, 25 | ax-mp 5 | . . 3 ⊢ (-1↑0) = 1 |
| 27 | 23, 26 | eqtri 2754 | . 2 ⊢ (-1↑(♯‘∅)) = 1 |
| 28 | 16, 21, 27 | 3eqtri 2758 | 1 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 {cpr 4573 〈cop 4577 I cid 5505 ran crn 5612 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 -cneg 11340 ℕcn 12120 2c2 12175 ↑cexp 13963 ♯chash 14232 Word cword 14415 Basecbs 17115 0gc0g 17338 Σg cgsu 17339 SymGrpcsymg 19276 pmTrspcpmtr 19348 pmSgncpsgn 19396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-word 14416 df-lsw 14465 df-concat 14473 df-s1 14499 df-substr 14544 df-pfx 14574 df-splice 14652 df-reverse 14661 df-s2 14750 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-tset 17175 df-0g 17340 df-gsum 17341 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-efmnd 18772 df-grp 18844 df-minusg 18845 df-subg 19031 df-ghm 19120 df-gim 19166 df-oppg 19253 df-symg 19277 df-pmtr 19349 df-psgn 19398 |
| This theorem is referenced by: m2detleiblem1 22534 m2detleiblem5 22535 |
| Copyright terms: Public domain | W3C validator |