![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnprfval1 | Structured version Visualization version GIF version |
Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.) |
Ref | Expression |
---|---|
psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnprfval1 | ⊢ (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
2 | prex 5433 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
3 | 1, 2 | eqeltri 2830 | . . . . . 6 ⊢ 𝐷 ∈ V |
4 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
5 | 4 | symgid 19269 | . . . . . 6 ⊢ (𝐷 ∈ V → ( I ↾ 𝐷) = (0g‘𝐺)) |
6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐷) = (0g‘𝐺) |
7 | 6 | gsum0 18603 | . . . 4 ⊢ (𝐺 Σg ∅) = ( I ↾ 𝐷) |
8 | reseq2 5977 | . . . . . 6 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = ( I ↾ {1, 2})) | |
9 | 1ex 11210 | . . . . . . 7 ⊢ 1 ∈ V | |
10 | 2nn 12285 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
11 | residpr 7141 | . . . . . . 7 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → ( I ↾ {1, 2}) = {⟨1, 1⟩, ⟨2, 2⟩}) | |
12 | 9, 10, 11 | mp2an 691 | . . . . . 6 ⊢ ( I ↾ {1, 2}) = {⟨1, 1⟩, ⟨2, 2⟩} |
13 | 8, 12 | eqtrdi 2789 | . . . . 5 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = {⟨1, 1⟩, ⟨2, 2⟩}) |
14 | 1, 13 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐷) = {⟨1, 1⟩, ⟨2, 2⟩} |
15 | 7, 14 | eqtr2i 2762 | . . 3 ⊢ {⟨1, 1⟩, ⟨2, 2⟩} = (𝐺 Σg ∅) |
16 | 15 | fveq2i 6895 | . 2 ⊢ (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = (𝑁‘(𝐺 Σg ∅)) |
17 | wrd0 14489 | . . 3 ⊢ ∅ ∈ Word 𝑇 | |
18 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
19 | psgnprfval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
20 | 4, 18, 19 | psgnvalii 19377 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
21 | 3, 17, 20 | mp2an 691 | . 2 ⊢ (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)) |
22 | hash0 14327 | . . . 4 ⊢ (♯‘∅) = 0 | |
23 | 22 | oveq2i 7420 | . . 3 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
24 | neg1cn 12326 | . . . 4 ⊢ -1 ∈ ℂ | |
25 | exp0 14031 | . . . 4 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
26 | 24, 25 | ax-mp 5 | . . 3 ⊢ (-1↑0) = 1 |
27 | 23, 26 | eqtri 2761 | . 2 ⊢ (-1↑(♯‘∅)) = 1 |
28 | 16, 21, 27 | 3eqtri 2765 | 1 ⊢ (𝑁‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 {cpr 4631 ⟨cop 4635 I cid 5574 ran crn 5678 ↾ cres 5679 ‘cfv 6544 (class class class)co 7409 ℂcc 11108 0cc0 11110 1c1 11111 -cneg 11445 ℕcn 12212 2c2 12267 ↑cexp 14027 ♯chash 14290 Word cword 14464 Basecbs 17144 0gc0g 17385 Σg cgsu 17386 SymGrpcsymg 19234 pmTrspcpmtr 19309 pmSgncpsgn 19357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-xor 1511 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-rp 12975 df-fz 13485 df-fzo 13628 df-seq 13967 df-exp 14028 df-hash 14291 df-word 14465 df-lsw 14513 df-concat 14521 df-s1 14546 df-substr 14591 df-pfx 14621 df-splice 14700 df-reverse 14709 df-s2 14799 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-tset 17216 df-0g 17387 df-gsum 17388 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-submnd 18672 df-efmnd 18750 df-grp 18822 df-minusg 18823 df-subg 19003 df-ghm 19090 df-gim 19133 df-oppg 19210 df-symg 19235 df-pmtr 19310 df-psgn 19359 |
This theorem is referenced by: m2detleiblem1 22126 m2detleiblem5 22127 |
Copyright terms: Public domain | W3C validator |