Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnprfval1 | Structured version Visualization version GIF version |
Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018.) |
Ref | Expression |
---|---|
psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnprfval1 | ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
2 | prex 5325 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
3 | 1, 2 | eqeltri 2834 | . . . . . 6 ⊢ 𝐷 ∈ V |
4 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
5 | 4 | symgid 18793 | . . . . . 6 ⊢ (𝐷 ∈ V → ( I ↾ 𝐷) = (0g‘𝐺)) |
6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐷) = (0g‘𝐺) |
7 | 6 | gsum0 18156 | . . . 4 ⊢ (𝐺 Σg ∅) = ( I ↾ 𝐷) |
8 | reseq2 5846 | . . . . . 6 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = ( I ↾ {1, 2})) | |
9 | 1ex 10829 | . . . . . . 7 ⊢ 1 ∈ V | |
10 | 2nn 11903 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
11 | residpr 6958 | . . . . . . 7 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉}) | |
12 | 9, 10, 11 | mp2an 692 | . . . . . 6 ⊢ ( I ↾ {1, 2}) = {〈1, 1〉, 〈2, 2〉} |
13 | 8, 12 | eqtrdi 2794 | . . . . 5 ⊢ (𝐷 = {1, 2} → ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉}) |
14 | 1, 13 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝐷) = {〈1, 1〉, 〈2, 2〉} |
15 | 7, 14 | eqtr2i 2766 | . . 3 ⊢ {〈1, 1〉, 〈2, 2〉} = (𝐺 Σg ∅) |
16 | 15 | fveq2i 6720 | . 2 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = (𝑁‘(𝐺 Σg ∅)) |
17 | wrd0 14094 | . . 3 ⊢ ∅ ∈ Word 𝑇 | |
18 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
19 | psgnprfval.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
20 | 4, 18, 19 | psgnvalii 18901 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
21 | 3, 17, 20 | mp2an 692 | . 2 ⊢ (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)) |
22 | hash0 13934 | . . . 4 ⊢ (♯‘∅) = 0 | |
23 | 22 | oveq2i 7224 | . . 3 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
24 | neg1cn 11944 | . . . 4 ⊢ -1 ∈ ℂ | |
25 | exp0 13639 | . . . 4 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
26 | 24, 25 | ax-mp 5 | . . 3 ⊢ (-1↑0) = 1 |
27 | 23, 26 | eqtri 2765 | . 2 ⊢ (-1↑(♯‘∅)) = 1 |
28 | 16, 21, 27 | 3eqtri 2769 | 1 ⊢ (𝑁‘{〈1, 1〉, 〈2, 2〉}) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∅c0 4237 {cpr 4543 〈cop 4547 I cid 5454 ran crn 5552 ↾ cres 5553 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 0cc0 10729 1c1 10730 -cneg 11063 ℕcn 11830 2c2 11885 ↑cexp 13635 ♯chash 13896 Word cword 14069 Basecbs 16760 0gc0g 16944 Σg cgsu 16945 SymGrpcsymg 18759 pmTrspcpmtr 18833 pmSgncpsgn 18881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-xor 1508 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-ot 4550 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-xnn0 12163 df-z 12177 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-word 14070 df-lsw 14118 df-concat 14126 df-s1 14153 df-substr 14206 df-pfx 14236 df-splice 14315 df-reverse 14324 df-s2 14413 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-tset 16821 df-0g 16946 df-gsum 16947 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-efmnd 18296 df-grp 18368 df-minusg 18369 df-subg 18540 df-ghm 18620 df-gim 18663 df-oppg 18738 df-symg 18760 df-pmtr 18834 df-psgn 18883 |
This theorem is referenced by: m2detleiblem1 21521 m2detleiblem5 21522 |
Copyright terms: Public domain | W3C validator |