MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpfi2 Structured version   Visualization version   GIF version

Theorem ixpfi2 8471
Description: A Cartesian product of finite sets such that all but finitely many are singletons is finite. (Note that 𝐵(𝑥) and 𝐷(𝑥) are both possibly dependent on 𝑥.) (Contributed by Mario Carneiro, 25-Jan-2015.)
Hypotheses
Ref Expression
ixpfi2.1 (𝜑𝐶 ∈ Fin)
ixpfi2.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
ixpfi2.3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ⊆ {𝐷})
Assertion
Ref Expression
ixpfi2 (𝜑X𝑥𝐴 𝐵 ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem ixpfi2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpfi2.1 . . . 4 (𝜑𝐶 ∈ Fin)
2 inss2 3993 . . . 4 (𝐴𝐶) ⊆ 𝐶
3 ssfi 8387 . . . 4 ((𝐶 ∈ Fin ∧ (𝐴𝐶) ⊆ 𝐶) → (𝐴𝐶) ∈ Fin)
41, 2, 3sylancl 580 . . 3 (𝜑 → (𝐴𝐶) ∈ Fin)
5 inss1 3992 . . . 4 (𝐴𝐶) ⊆ 𝐴
6 ixpfi2.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
76ralrimiva 3113 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
8 ssralv 3826 . . . 4 ((𝐴𝐶) ⊆ 𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → ∀𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin))
95, 7, 8mpsyl 68 . . 3 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin)
10 ixpfi 8470 . . 3 (((𝐴𝐶) ∈ Fin ∧ ∀𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin) → X𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin)
114, 9, 10syl2anc 579 . 2 (𝜑X𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin)
12 resixp 8148 . . . . 5 (((𝐴𝐶) ⊆ 𝐴𝑓X𝑥𝐴 𝐵) → (𝑓 ↾ (𝐴𝐶)) ∈ X𝑥 ∈ (𝐴𝐶)𝐵)
135, 12mpan 681 . . . 4 (𝑓X𝑥𝐴 𝐵 → (𝑓 ↾ (𝐴𝐶)) ∈ X𝑥 ∈ (𝐴𝐶)𝐵)
1413a1i 11 . . 3 (𝜑 → (𝑓X𝑥𝐴 𝐵 → (𝑓 ↾ (𝐴𝐶)) ∈ X𝑥 ∈ (𝐴𝐶)𝐵))
15 simprl 787 . . . . . . . . . 10 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑓X𝑥𝐴 𝐵)
16 vex 3353 . . . . . . . . . . 11 𝑓 ∈ V
1716elixp 8120 . . . . . . . . . 10 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1815, 17sylib 209 . . . . . . . . 9 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1918simprd 489 . . . . . . . 8 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
20 simprr 789 . . . . . . . . . 10 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑔X𝑥𝐴 𝐵)
21 vex 3353 . . . . . . . . . . 11 𝑔 ∈ V
2221elixp 8120 . . . . . . . . . 10 (𝑔X𝑥𝐴 𝐵 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
2320, 22sylib 209 . . . . . . . . 9 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
2423simprd 489 . . . . . . . 8 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)
25 r19.26 3211 . . . . . . . . 9 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
26 difss 3899 . . . . . . . . . . 11 (𝐴𝐶) ⊆ 𝐴
27 ssralv 3826 . . . . . . . . . . 11 ((𝐴𝐶) ⊆ 𝐴 → (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵)))
2826, 27ax-mp 5 . . . . . . . . . 10 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵))
29 ixpfi2.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ⊆ {𝐷})
3029sseld 3760 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ {𝐷}))
31 elsni 4351 . . . . . . . . . . . . . . 15 ((𝑓𝑥) ∈ {𝐷} → (𝑓𝑥) = 𝐷)
3230, 31syl6 35 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) = 𝐷))
3329sseld 3760 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑔𝑥) ∈ 𝐵 → (𝑔𝑥) ∈ {𝐷}))
34 elsni 4351 . . . . . . . . . . . . . . 15 ((𝑔𝑥) ∈ {𝐷} → (𝑔𝑥) = 𝐷)
3533, 34syl6 35 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑔𝑥) ∈ 𝐵 → (𝑔𝑥) = 𝐷))
3632, 35anim12d 602 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴𝐶)) → (((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ((𝑓𝑥) = 𝐷 ∧ (𝑔𝑥) = 𝐷)))
37 eqtr3 2786 . . . . . . . . . . . . 13 (((𝑓𝑥) = 𝐷 ∧ (𝑔𝑥) = 𝐷) → (𝑓𝑥) = (𝑔𝑥))
3836, 37syl6 35 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → (((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → (𝑓𝑥) = (𝑔𝑥)))
3938ralimdva 3109 . . . . . . . . . . 11 (𝜑 → (∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4039adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4128, 40syl5 34 . . . . . . . . 9 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4225, 41syl5bir 234 . . . . . . . 8 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ((∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4319, 24, 42mp2and 690 . . . . . . 7 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥))
4443biantrud 527 . . . . . 6 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ↔ (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ∧ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥))))
45 fvres 6394 . . . . . . . 8 (𝑥 ∈ (𝐴𝐶) → ((𝑓 ↾ (𝐴𝐶))‘𝑥) = (𝑓𝑥))
46 fvres 6394 . . . . . . . 8 (𝑥 ∈ (𝐴𝐶) → ((𝑔 ↾ (𝐴𝐶))‘𝑥) = (𝑔𝑥))
4745, 46eqeq12d 2780 . . . . . . 7 (𝑥 ∈ (𝐴𝐶) → (((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥) ↔ (𝑓𝑥) = (𝑔𝑥)))
4847ralbiia 3126 . . . . . 6 (∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥) ↔ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥))
49 inundif 4206 . . . . . . . 8 ((𝐴𝐶) ∪ (𝐴𝐶)) = 𝐴
5049raleqi 3290 . . . . . . 7 (∀𝑥 ∈ ((𝐴𝐶) ∪ (𝐴𝐶))(𝑓𝑥) = (𝑔𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥))
51 ralunb 3956 . . . . . . 7 (∀𝑥 ∈ ((𝐴𝐶) ∪ (𝐴𝐶))(𝑓𝑥) = (𝑔𝑥) ↔ (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ∧ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
5250, 51bitr3i 268 . . . . . 6 (∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥) ↔ (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ∧ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
5344, 48, 523bitr4g 305 . . . . 5 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥)))
5418simpld 488 . . . . . . 7 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑓 Fn 𝐴)
55 fnssres 6182 . . . . . . 7 ((𝑓 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴) → (𝑓 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
5654, 5, 55sylancl 580 . . . . . 6 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑓 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
5723simpld 488 . . . . . . 7 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑔 Fn 𝐴)
58 fnssres 6182 . . . . . . 7 ((𝑔 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴) → (𝑔 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
5957, 5, 58sylancl 580 . . . . . 6 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑔 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
60 eqfnfv 6501 . . . . . 6 (((𝑓 ↾ (𝐴𝐶)) Fn (𝐴𝐶) ∧ (𝑔 ↾ (𝐴𝐶)) Fn (𝐴𝐶)) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ ∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥)))
6156, 59, 60syl2anc 579 . . . . 5 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ ∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥)))
62 eqfnfv 6501 . . . . . 6 ((𝑓 Fn 𝐴𝑔 Fn 𝐴) → (𝑓 = 𝑔 ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥)))
6354, 57, 62syl2anc 579 . . . . 5 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑓 = 𝑔 ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥)))
6453, 61, 633bitr4d 302 . . . 4 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ 𝑓 = 𝑔))
6564ex 401 . . 3 (𝜑 → ((𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ 𝑓 = 𝑔)))
6614, 65dom2lem 8200 . 2 (𝜑 → (𝑓X𝑥𝐴 𝐵 ↦ (𝑓 ↾ (𝐴𝐶))):X𝑥𝐴 𝐵1-1X𝑥 ∈ (𝐴𝐶)𝐵)
67 f1fi 8460 . 2 ((X𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin ∧ (𝑓X𝑥𝐴 𝐵 ↦ (𝑓 ↾ (𝐴𝐶))):X𝑥𝐴 𝐵1-1X𝑥 ∈ (𝐴𝐶)𝐵) → X𝑥𝐴 𝐵 ∈ Fin)
6811, 66, 67syl2anc 579 1 (𝜑X𝑥𝐴 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  cdif 3729  cun 3730  cin 3731  wss 3732  {csn 4334  cmpt 4888  cres 5279   Fn wfn 6063  1-1wf1 6065  cfv 6068  Xcixp 8113  Fincfn 8160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164
This theorem is referenced by:  psrbaglefi  19646  eulerpartlemb  30812
  Copyright terms: Public domain W3C validator