Step | Hyp | Ref
| Expression |
1 | | ixpfi2.1 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Fin) |
2 | | inss2 4169 |
. . . 4
⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 |
3 | | ssfi 8994 |
. . . 4
⊢ ((𝐶 ∈ Fin ∧ (𝐴 ∩ 𝐶) ⊆ 𝐶) → (𝐴 ∩ 𝐶) ∈ Fin) |
4 | 1, 2, 3 | sylancl 587 |
. . 3
⊢ (𝜑 → (𝐴 ∩ 𝐶) ∈ Fin) |
5 | | inss1 4168 |
. . . 4
⊢ (𝐴 ∩ 𝐶) ⊆ 𝐴 |
6 | | ixpfi2.2 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
7 | 6 | ralrimiva 3140 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
8 | | ssralv 3992 |
. . . 4
⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ Fin)) |
9 | 5, 7, 8 | mpsyl 68 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ Fin) |
10 | | ixpfi 9160 |
. . 3
⊢ (((𝐴 ∩ 𝐶) ∈ Fin ∧ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ Fin) → X𝑥 ∈
(𝐴 ∩ 𝐶)𝐵 ∈ Fin) |
11 | 4, 9, 10 | syl2anc 585 |
. 2
⊢ (𝜑 → X𝑥 ∈
(𝐴 ∩ 𝐶)𝐵 ∈ Fin) |
12 | | resixp 8752 |
. . . . 5
⊢ (((𝐴 ∩ 𝐶) ⊆ 𝐴 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → (𝑓 ↾ (𝐴 ∩ 𝐶)) ∈ X𝑥 ∈ (𝐴 ∩ 𝐶)𝐵) |
13 | 5, 12 | mpan 688 |
. . . 4
⊢ (𝑓 ∈ X𝑥 ∈
𝐴 𝐵 → (𝑓 ↾ (𝐴 ∩ 𝐶)) ∈ X𝑥 ∈ (𝐴 ∩ 𝐶)𝐵) |
14 | 13 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → (𝑓 ↾ (𝐴 ∩ 𝐶)) ∈ X𝑥 ∈ (𝐴 ∩ 𝐶)𝐵)) |
15 | | simprl 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) |
16 | | vex 3441 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
17 | 16 | elixp 8723 |
. . . . . . . . . 10
⊢ (𝑓 ∈ X𝑥 ∈
𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
18 | 15, 17 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
19 | 18 | simprd 497 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) |
20 | | simprr 771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵) |
21 | | vex 3441 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
22 | 21 | elixp 8723 |
. . . . . . . . . 10
⊢ (𝑔 ∈ X𝑥 ∈
𝐴 𝐵 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵)) |
23 | 20, 22 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (𝑔 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵)) |
24 | 23 | simprd 497 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵) |
25 | | r19.26 3111 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) ↔ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵)) |
26 | | difss 4072 |
. . . . . . . . . . 11
⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 |
27 | | ssralv 3992 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ 𝐶) ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵))) |
28 | 26, 27 | ax-mp 5 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵)) |
29 | | ixpfi2.3 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → 𝐵 ⊆ {𝐷}) |
30 | 29 | sseld 3925 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝑓‘𝑥) ∈ 𝐵 → (𝑓‘𝑥) ∈ {𝐷})) |
31 | | elsni 4582 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘𝑥) ∈ {𝐷} → (𝑓‘𝑥) = 𝐷) |
32 | 30, 31 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝑓‘𝑥) ∈ 𝐵 → (𝑓‘𝑥) = 𝐷)) |
33 | 29 | sseld 3925 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝑔‘𝑥) ∈ 𝐵 → (𝑔‘𝑥) ∈ {𝐷})) |
34 | | elsni 4582 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑥) ∈ {𝐷} → (𝑔‘𝑥) = 𝐷) |
35 | 33, 34 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝑔‘𝑥) ∈ 𝐵 → (𝑔‘𝑥) = 𝐷)) |
36 | 32, 35 | anim12d 610 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → (((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ((𝑓‘𝑥) = 𝐷 ∧ (𝑔‘𝑥) = 𝐷))) |
37 | | eqtr3 2762 |
. . . . . . . . . . . . 13
⊢ (((𝑓‘𝑥) = 𝐷 ∧ (𝑔‘𝑥) = 𝐷) → (𝑓‘𝑥) = (𝑔‘𝑥)) |
38 | 36, 37 | syl6 35 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → (((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → (𝑓‘𝑥) = (𝑔‘𝑥))) |
39 | 38 | ralimdva 3161 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑥 ∈ (𝐴 ∖ 𝐶)((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
40 | 39 | adantr 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (∀𝑥 ∈ (𝐴 ∖ 𝐶)((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
41 | 28, 40 | syl5 34 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (∀𝑥 ∈ 𝐴 ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
42 | 25, 41 | syl5bir 243 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ((∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
43 | 19, 24, 42 | mp2and 697 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥)) |
44 | 43 | biantrud 533 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (∀𝑥 ∈ (𝐴 ∩ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥) ↔ (∀𝑥 ∈ (𝐴 ∩ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥) ∧ ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥)))) |
45 | | fvres 6823 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = (𝑓‘𝑥)) |
46 | | fvres 6823 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥) = (𝑔‘𝑥)) |
47 | 45, 46 | eqeq12d 2752 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → (((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥) ↔ (𝑓‘𝑥) = (𝑔‘𝑥))) |
48 | 47 | ralbiia 3091 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝐴 ∩ 𝐶)((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥)) |
49 | | inundif 4418 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝐶) ∪ (𝐴 ∖ 𝐶)) = 𝐴 |
50 | 49 | raleqi 3358 |
. . . . . . 7
⊢
(∀𝑥 ∈
((𝐴 ∩ 𝐶) ∪ (𝐴 ∖ 𝐶))(𝑓‘𝑥) = (𝑔‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = (𝑔‘𝑥)) |
51 | | ralunb 4131 |
. . . . . . 7
⊢
(∀𝑥 ∈
((𝐴 ∩ 𝐶) ∪ (𝐴 ∖ 𝐶))(𝑓‘𝑥) = (𝑔‘𝑥) ↔ (∀𝑥 ∈ (𝐴 ∩ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥) ∧ ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
52 | 50, 51 | bitr3i 277 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥) = (𝑔‘𝑥) ↔ (∀𝑥 ∈ (𝐴 ∩ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥) ∧ ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
53 | 44, 48, 52 | 3bitr4g 314 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (∀𝑥 ∈ (𝐴 ∩ 𝐶)((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = (𝑔‘𝑥))) |
54 | 18 | simpld 496 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → 𝑓 Fn 𝐴) |
55 | | fnssres 6586 |
. . . . . . 7
⊢ ((𝑓 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴) → (𝑓 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶)) |
56 | 54, 5, 55 | sylancl 587 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (𝑓 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶)) |
57 | 23 | simpld 496 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → 𝑔 Fn 𝐴) |
58 | | fnssres 6586 |
. . . . . . 7
⊢ ((𝑔 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴) → (𝑔 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶)) |
59 | 57, 5, 58 | sylancl 587 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (𝑔 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶)) |
60 | | eqfnfv 6941 |
. . . . . 6
⊢ (((𝑓 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶) ∧ (𝑔 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶)) → ((𝑓 ↾ (𝐴 ∩ 𝐶)) = (𝑔 ↾ (𝐴 ∩ 𝐶)) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥))) |
61 | 56, 59, 60 | syl2anc 585 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ((𝑓 ↾ (𝐴 ∩ 𝐶)) = (𝑔 ↾ (𝐴 ∩ 𝐶)) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥))) |
62 | | eqfnfv 6941 |
. . . . . 6
⊢ ((𝑓 Fn 𝐴 ∧ 𝑔 Fn 𝐴) → (𝑓 = 𝑔 ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = (𝑔‘𝑥))) |
63 | 54, 57, 62 | syl2anc 585 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (𝑓 = 𝑔 ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = (𝑔‘𝑥))) |
64 | 53, 61, 63 | 3bitr4d 311 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ((𝑓 ↾ (𝐴 ∩ 𝐶)) = (𝑔 ↾ (𝐴 ∩ 𝐶)) ↔ 𝑓 = 𝑔)) |
65 | 64 | ex 414 |
. . 3
⊢ (𝜑 → ((𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵) → ((𝑓 ↾ (𝐴 ∩ 𝐶)) = (𝑔 ↾ (𝐴 ∩ 𝐶)) ↔ 𝑓 = 𝑔))) |
66 | 14, 65 | dom2lem 8813 |
. 2
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↦ (𝑓 ↾ (𝐴 ∩ 𝐶))):X𝑥 ∈ 𝐴 𝐵–1-1→X𝑥 ∈ (𝐴 ∩ 𝐶)𝐵) |
67 | | f1fi 9150 |
. 2
⊢ ((X𝑥 ∈
(𝐴 ∩ 𝐶)𝐵 ∈ Fin ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↦ (𝑓 ↾ (𝐴 ∩ 𝐶))):X𝑥 ∈ 𝐴 𝐵–1-1→X𝑥 ∈ (𝐴 ∩ 𝐶)𝐵) → X𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
68 | 11, 66, 67 | syl2anc 585 |
1
⊢ (𝜑 → X𝑥 ∈
𝐴 𝐵 ∈ Fin) |