| Step | Hyp | Ref
| Expression |
| 1 | | ixpfi2.1 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Fin) |
| 2 | | inss2 4238 |
. . . 4
⊢ (𝐴 ∩ 𝐶) ⊆ 𝐶 |
| 3 | | ssfi 9213 |
. . . 4
⊢ ((𝐶 ∈ Fin ∧ (𝐴 ∩ 𝐶) ⊆ 𝐶) → (𝐴 ∩ 𝐶) ∈ Fin) |
| 4 | 1, 2, 3 | sylancl 586 |
. . 3
⊢ (𝜑 → (𝐴 ∩ 𝐶) ∈ Fin) |
| 5 | | inss1 4237 |
. . . 4
⊢ (𝐴 ∩ 𝐶) ⊆ 𝐴 |
| 6 | | ixpfi2.2 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
| 7 | 6 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
| 8 | | ssralv 4052 |
. . . 4
⊢ ((𝐴 ∩ 𝐶) ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ∈ Fin → ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ Fin)) |
| 9 | 5, 7, 8 | mpsyl 68 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ Fin) |
| 10 | | ixpfi 9389 |
. . 3
⊢ (((𝐴 ∩ 𝐶) ∈ Fin ∧ ∀𝑥 ∈ (𝐴 ∩ 𝐶)𝐵 ∈ Fin) → X𝑥 ∈
(𝐴 ∩ 𝐶)𝐵 ∈ Fin) |
| 11 | 4, 9, 10 | syl2anc 584 |
. 2
⊢ (𝜑 → X𝑥 ∈
(𝐴 ∩ 𝐶)𝐵 ∈ Fin) |
| 12 | | resixp 8973 |
. . . . 5
⊢ (((𝐴 ∩ 𝐶) ⊆ 𝐴 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → (𝑓 ↾ (𝐴 ∩ 𝐶)) ∈ X𝑥 ∈ (𝐴 ∩ 𝐶)𝐵) |
| 13 | 5, 12 | mpan 690 |
. . . 4
⊢ (𝑓 ∈ X𝑥 ∈
𝐴 𝐵 → (𝑓 ↾ (𝐴 ∩ 𝐶)) ∈ X𝑥 ∈ (𝐴 ∩ 𝐶)𝐵) |
| 14 | 13 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → (𝑓 ↾ (𝐴 ∩ 𝐶)) ∈ X𝑥 ∈ (𝐴 ∩ 𝐶)𝐵)) |
| 15 | | simprl 771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) |
| 16 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
| 17 | 16 | elixp 8944 |
. . . . . . . . . 10
⊢ (𝑓 ∈ X𝑥 ∈
𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 18 | 15, 17 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 19 | 18 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) |
| 20 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵) |
| 21 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
| 22 | 21 | elixp 8944 |
. . . . . . . . . 10
⊢ (𝑔 ∈ X𝑥 ∈
𝐴 𝐵 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵)) |
| 23 | 20, 22 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (𝑔 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵)) |
| 24 | 23 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵) |
| 25 | | r19.26 3111 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) ↔ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵)) |
| 26 | | difss 4136 |
. . . . . . . . . . 11
⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 |
| 27 | | ssralv 4052 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ 𝐶) ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵))) |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵)) |
| 29 | | ixpfi2.3 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → 𝐵 ⊆ {𝐷}) |
| 30 | 29 | sseld 3982 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝑓‘𝑥) ∈ 𝐵 → (𝑓‘𝑥) ∈ {𝐷})) |
| 31 | | elsni 4643 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘𝑥) ∈ {𝐷} → (𝑓‘𝑥) = 𝐷) |
| 32 | 30, 31 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝑓‘𝑥) ∈ 𝐵 → (𝑓‘𝑥) = 𝐷)) |
| 33 | 29 | sseld 3982 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝑔‘𝑥) ∈ 𝐵 → (𝑔‘𝑥) ∈ {𝐷})) |
| 34 | | elsni 4643 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑥) ∈ {𝐷} → (𝑔‘𝑥) = 𝐷) |
| 35 | 33, 34 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → ((𝑔‘𝑥) ∈ 𝐵 → (𝑔‘𝑥) = 𝐷)) |
| 36 | 32, 35 | anim12d 609 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → (((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ((𝑓‘𝑥) = 𝐷 ∧ (𝑔‘𝑥) = 𝐷))) |
| 37 | | eqtr3 2763 |
. . . . . . . . . . . . 13
⊢ (((𝑓‘𝑥) = 𝐷 ∧ (𝑔‘𝑥) = 𝐷) → (𝑓‘𝑥) = (𝑔‘𝑥)) |
| 38 | 36, 37 | syl6 35 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐶)) → (((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → (𝑓‘𝑥) = (𝑔‘𝑥))) |
| 39 | 38 | ralimdva 3167 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑥 ∈ (𝐴 ∖ 𝐶)((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
| 40 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (∀𝑥 ∈ (𝐴 ∖ 𝐶)((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
| 41 | 28, 40 | syl5 34 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (∀𝑥 ∈ 𝐴 ((𝑓‘𝑥) ∈ 𝐵 ∧ (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
| 42 | 25, 41 | biimtrrid 243 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ((∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
| 43 | 19, 24, 42 | mp2and 699 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥)) |
| 44 | 43 | biantrud 531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (∀𝑥 ∈ (𝐴 ∩ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥) ↔ (∀𝑥 ∈ (𝐴 ∩ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥) ∧ ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥)))) |
| 45 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = (𝑓‘𝑥)) |
| 46 | | fvres 6925 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥) = (𝑔‘𝑥)) |
| 47 | 45, 46 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → (((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥) ↔ (𝑓‘𝑥) = (𝑔‘𝑥))) |
| 48 | 47 | ralbiia 3091 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝐴 ∩ 𝐶)((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥)) |
| 49 | | inundif 4479 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝐶) ∪ (𝐴 ∖ 𝐶)) = 𝐴 |
| 50 | 49 | raleqi 3324 |
. . . . . . 7
⊢
(∀𝑥 ∈
((𝐴 ∩ 𝐶) ∪ (𝐴 ∖ 𝐶))(𝑓‘𝑥) = (𝑔‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = (𝑔‘𝑥)) |
| 51 | | ralunb 4197 |
. . . . . . 7
⊢
(∀𝑥 ∈
((𝐴 ∩ 𝐶) ∪ (𝐴 ∖ 𝐶))(𝑓‘𝑥) = (𝑔‘𝑥) ↔ (∀𝑥 ∈ (𝐴 ∩ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥) ∧ ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
| 52 | 50, 51 | bitr3i 277 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥) = (𝑔‘𝑥) ↔ (∀𝑥 ∈ (𝐴 ∩ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥) ∧ ∀𝑥 ∈ (𝐴 ∖ 𝐶)(𝑓‘𝑥) = (𝑔‘𝑥))) |
| 53 | 44, 48, 52 | 3bitr4g 314 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (∀𝑥 ∈ (𝐴 ∩ 𝐶)((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = (𝑔‘𝑥))) |
| 54 | 18 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → 𝑓 Fn 𝐴) |
| 55 | | fnssres 6691 |
. . . . . . 7
⊢ ((𝑓 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴) → (𝑓 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶)) |
| 56 | 54, 5, 55 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (𝑓 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶)) |
| 57 | 23 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → 𝑔 Fn 𝐴) |
| 58 | | fnssres 6691 |
. . . . . . 7
⊢ ((𝑔 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) ⊆ 𝐴) → (𝑔 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶)) |
| 59 | 57, 5, 58 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (𝑔 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶)) |
| 60 | | eqfnfv 7051 |
. . . . . 6
⊢ (((𝑓 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶) ∧ (𝑔 ↾ (𝐴 ∩ 𝐶)) Fn (𝐴 ∩ 𝐶)) → ((𝑓 ↾ (𝐴 ∩ 𝐶)) = (𝑔 ↾ (𝐴 ∩ 𝐶)) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥))) |
| 61 | 56, 59, 60 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ((𝑓 ↾ (𝐴 ∩ 𝐶)) = (𝑔 ↾ (𝐴 ∩ 𝐶)) ↔ ∀𝑥 ∈ (𝐴 ∩ 𝐶)((𝑓 ↾ (𝐴 ∩ 𝐶))‘𝑥) = ((𝑔 ↾ (𝐴 ∩ 𝐶))‘𝑥))) |
| 62 | | eqfnfv 7051 |
. . . . . 6
⊢ ((𝑓 Fn 𝐴 ∧ 𝑔 Fn 𝐴) → (𝑓 = 𝑔 ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = (𝑔‘𝑥))) |
| 63 | 54, 57, 62 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → (𝑓 = 𝑔 ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = (𝑔‘𝑥))) |
| 64 | 53, 61, 63 | 3bitr4d 311 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵)) → ((𝑓 ↾ (𝐴 ∩ 𝐶)) = (𝑔 ↾ (𝐴 ∩ 𝐶)) ↔ 𝑓 = 𝑔)) |
| 65 | 64 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑔 ∈ X𝑥 ∈ 𝐴 𝐵) → ((𝑓 ↾ (𝐴 ∩ 𝐶)) = (𝑔 ↾ (𝐴 ∩ 𝐶)) ↔ 𝑓 = 𝑔))) |
| 66 | 14, 65 | dom2lem 9032 |
. 2
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↦ (𝑓 ↾ (𝐴 ∩ 𝐶))):X𝑥 ∈ 𝐴 𝐵–1-1→X𝑥 ∈ (𝐴 ∩ 𝐶)𝐵) |
| 67 | | f1fi 9352 |
. 2
⊢ ((X𝑥 ∈
(𝐴 ∩ 𝐶)𝐵 ∈ Fin ∧ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↦ (𝑓 ↾ (𝐴 ∩ 𝐶))):X𝑥 ∈ 𝐴 𝐵–1-1→X𝑥 ∈ (𝐴 ∩ 𝐶)𝐵) → X𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
| 68 | 11, 66, 67 | syl2anc 584 |
1
⊢ (𝜑 → X𝑥 ∈
𝐴 𝐵 ∈ Fin) |