MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpfi2 Structured version   Visualization version   GIF version

Theorem ixpfi2 9362
Description: A Cartesian product of finite sets such that all but finitely many are singletons is finite. (Note that 𝐵(𝑥) and 𝐷(𝑥) are both possibly dependent on 𝑥.) (Contributed by Mario Carneiro, 25-Jan-2015.)
Hypotheses
Ref Expression
ixpfi2.1 (𝜑𝐶 ∈ Fin)
ixpfi2.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
ixpfi2.3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ⊆ {𝐷})
Assertion
Ref Expression
ixpfi2 (𝜑X𝑥𝐴 𝐵 ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem ixpfi2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpfi2.1 . . . 4 (𝜑𝐶 ∈ Fin)
2 inss2 4213 . . . 4 (𝐴𝐶) ⊆ 𝐶
3 ssfi 9187 . . . 4 ((𝐶 ∈ Fin ∧ (𝐴𝐶) ⊆ 𝐶) → (𝐴𝐶) ∈ Fin)
41, 2, 3sylancl 586 . . 3 (𝜑 → (𝐴𝐶) ∈ Fin)
5 inss1 4212 . . . 4 (𝐴𝐶) ⊆ 𝐴
6 ixpfi2.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
76ralrimiva 3132 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
8 ssralv 4027 . . . 4 ((𝐴𝐶) ⊆ 𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → ∀𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin))
95, 7, 8mpsyl 68 . . 3 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin)
10 ixpfi 9361 . . 3 (((𝐴𝐶) ∈ Fin ∧ ∀𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin) → X𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin)
114, 9, 10syl2anc 584 . 2 (𝜑X𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin)
12 resixp 8947 . . . . 5 (((𝐴𝐶) ⊆ 𝐴𝑓X𝑥𝐴 𝐵) → (𝑓 ↾ (𝐴𝐶)) ∈ X𝑥 ∈ (𝐴𝐶)𝐵)
135, 12mpan 690 . . . 4 (𝑓X𝑥𝐴 𝐵 → (𝑓 ↾ (𝐴𝐶)) ∈ X𝑥 ∈ (𝐴𝐶)𝐵)
1413a1i 11 . . 3 (𝜑 → (𝑓X𝑥𝐴 𝐵 → (𝑓 ↾ (𝐴𝐶)) ∈ X𝑥 ∈ (𝐴𝐶)𝐵))
15 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑓X𝑥𝐴 𝐵)
16 vex 3463 . . . . . . . . . . 11 𝑓 ∈ V
1716elixp 8918 . . . . . . . . . 10 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1815, 17sylib 218 . . . . . . . . 9 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1918simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
20 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑔X𝑥𝐴 𝐵)
21 vex 3463 . . . . . . . . . . 11 𝑔 ∈ V
2221elixp 8918 . . . . . . . . . 10 (𝑔X𝑥𝐴 𝐵 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
2320, 22sylib 218 . . . . . . . . 9 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
2423simprd 495 . . . . . . . 8 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)
25 r19.26 3098 . . . . . . . . 9 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
26 difss 4111 . . . . . . . . . . 11 (𝐴𝐶) ⊆ 𝐴
27 ssralv 4027 . . . . . . . . . . 11 ((𝐴𝐶) ⊆ 𝐴 → (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵)))
2826, 27ax-mp 5 . . . . . . . . . 10 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵))
29 ixpfi2.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ⊆ {𝐷})
3029sseld 3957 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ {𝐷}))
31 elsni 4618 . . . . . . . . . . . . . . 15 ((𝑓𝑥) ∈ {𝐷} → (𝑓𝑥) = 𝐷)
3230, 31syl6 35 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) = 𝐷))
3329sseld 3957 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑔𝑥) ∈ 𝐵 → (𝑔𝑥) ∈ {𝐷}))
34 elsni 4618 . . . . . . . . . . . . . . 15 ((𝑔𝑥) ∈ {𝐷} → (𝑔𝑥) = 𝐷)
3533, 34syl6 35 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑔𝑥) ∈ 𝐵 → (𝑔𝑥) = 𝐷))
3632, 35anim12d 609 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴𝐶)) → (((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ((𝑓𝑥) = 𝐷 ∧ (𝑔𝑥) = 𝐷)))
37 eqtr3 2757 . . . . . . . . . . . . 13 (((𝑓𝑥) = 𝐷 ∧ (𝑔𝑥) = 𝐷) → (𝑓𝑥) = (𝑔𝑥))
3836, 37syl6 35 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → (((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → (𝑓𝑥) = (𝑔𝑥)))
3938ralimdva 3152 . . . . . . . . . . 11 (𝜑 → (∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4039adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4128, 40syl5 34 . . . . . . . . 9 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4225, 41biimtrrid 243 . . . . . . . 8 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ((∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4319, 24, 42mp2and 699 . . . . . . 7 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥))
4443biantrud 531 . . . . . 6 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ↔ (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ∧ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥))))
45 fvres 6895 . . . . . . . 8 (𝑥 ∈ (𝐴𝐶) → ((𝑓 ↾ (𝐴𝐶))‘𝑥) = (𝑓𝑥))
46 fvres 6895 . . . . . . . 8 (𝑥 ∈ (𝐴𝐶) → ((𝑔 ↾ (𝐴𝐶))‘𝑥) = (𝑔𝑥))
4745, 46eqeq12d 2751 . . . . . . 7 (𝑥 ∈ (𝐴𝐶) → (((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥) ↔ (𝑓𝑥) = (𝑔𝑥)))
4847ralbiia 3080 . . . . . 6 (∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥) ↔ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥))
49 inundif 4454 . . . . . . . 8 ((𝐴𝐶) ∪ (𝐴𝐶)) = 𝐴
5049raleqi 3303 . . . . . . 7 (∀𝑥 ∈ ((𝐴𝐶) ∪ (𝐴𝐶))(𝑓𝑥) = (𝑔𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥))
51 ralunb 4172 . . . . . . 7 (∀𝑥 ∈ ((𝐴𝐶) ∪ (𝐴𝐶))(𝑓𝑥) = (𝑔𝑥) ↔ (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ∧ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
5250, 51bitr3i 277 . . . . . 6 (∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥) ↔ (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ∧ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
5344, 48, 523bitr4g 314 . . . . 5 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥)))
5418simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑓 Fn 𝐴)
55 fnssres 6661 . . . . . . 7 ((𝑓 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴) → (𝑓 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
5654, 5, 55sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑓 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
5723simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑔 Fn 𝐴)
58 fnssres 6661 . . . . . . 7 ((𝑔 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴) → (𝑔 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
5957, 5, 58sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑔 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
60 eqfnfv 7021 . . . . . 6 (((𝑓 ↾ (𝐴𝐶)) Fn (𝐴𝐶) ∧ (𝑔 ↾ (𝐴𝐶)) Fn (𝐴𝐶)) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ ∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥)))
6156, 59, 60syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ ∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥)))
62 eqfnfv 7021 . . . . . 6 ((𝑓 Fn 𝐴𝑔 Fn 𝐴) → (𝑓 = 𝑔 ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥)))
6354, 57, 62syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑓 = 𝑔 ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥)))
6453, 61, 633bitr4d 311 . . . 4 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ 𝑓 = 𝑔))
6564ex 412 . . 3 (𝜑 → ((𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ 𝑓 = 𝑔)))
6614, 65dom2lem 9006 . 2 (𝜑 → (𝑓X𝑥𝐴 𝐵 ↦ (𝑓 ↾ (𝐴𝐶))):X𝑥𝐴 𝐵1-1X𝑥 ∈ (𝐴𝐶)𝐵)
67 f1fi 9324 . 2 ((X𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin ∧ (𝑓X𝑥𝐴 𝐵 ↦ (𝑓 ↾ (𝐴𝐶))):X𝑥𝐴 𝐵1-1X𝑥 ∈ (𝐴𝐶)𝐵) → X𝑥𝐴 𝐵 ∈ Fin)
6811, 66, 67syl2anc 584 1 (𝜑X𝑥𝐴 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cdif 3923  cun 3924  cin 3925  wss 3926  {csn 4601  cmpt 5201  cres 5656   Fn wfn 6526  1-1wf1 6528  cfv 6531  Xcixp 8911  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-fin 8963
This theorem is referenced by:  psrbaglefi  21886  eulerpartlemb  34400
  Copyright terms: Public domain W3C validator