Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubval Structured version   Visualization version   GIF version

Theorem resubval 41815
Description: Value of real subtraction, which is the (unique) real 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem resubval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2738 . . 3 (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴))
21riotabidv 7363 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦) = (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴))
3 oveq1 7412 . . . 4 (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥))
43eqeq1d 2728 . . 3 (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴))
54riotabidv 7363 . 2 (𝑧 = 𝐵 → (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
6 df-resub 41814 . 2 = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦))
7 riotaex 7365 . 2 (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) ∈ V
82, 5, 6, 7ovmpo 7564 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  crio 7360  (class class class)co 7405  cr 11111   + caddc 11115   cresub 41813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6489  df-fun 6539  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-resub 41814
This theorem is referenced by:  rernegcl  41819  renegadd  41820  rersubcl  41826  resubadd  41827  resubf  41829  resubeqsub  41877
  Copyright terms: Public domain W3C validator