![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubval | Structured version Visualization version GIF version |
Description: Value of real subtraction, which is the (unique) real 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2738 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴)) | |
2 | 1 | riotabidv 7363 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦) = (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴)) |
3 | oveq1 7412 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥)) | |
4 | 3 | eqeq1d 2728 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴)) |
5 | 4 | riotabidv 7363 | . 2 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) |
6 | df-resub 41814 | . 2 ⊢ −ℝ = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦)) | |
7 | riotaex 7365 | . 2 ⊢ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) ∈ V | |
8 | 2, 5, 6, 7 | ovmpo 7564 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ℩crio 7360 (class class class)co 7405 ℝcr 11111 + caddc 11115 −ℝ cresub 41813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-resub 41814 |
This theorem is referenced by: rernegcl 41819 renegadd 41820 rersubcl 41826 resubadd 41827 resubf 41829 resubeqsub 41877 |
Copyright terms: Public domain | W3C validator |