Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubval Structured version   Visualization version   GIF version

Theorem resubval 41971
Description: Value of real subtraction, which is the (unique) real 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem resubval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2740 . . 3 (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴))
21riotabidv 7384 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦) = (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴))
3 oveq1 7433 . . . 4 (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥))
43eqeq1d 2730 . . 3 (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴))
54riotabidv 7384 . 2 (𝑧 = 𝐵 → (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
6 df-resub 41970 . 2 = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦))
7 riotaex 7386 . 2 (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) ∈ V
82, 5, 6, 7ovmpo 7588 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  crio 7381  (class class class)co 7426  cr 11147   + caddc 11151   cresub 41969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-resub 41970
This theorem is referenced by:  rernegcl  41975  renegadd  41976  rersubcl  41982  resubadd  41983  resubf  41985  resubeqsub  42033
  Copyright terms: Public domain W3C validator