| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resubval | Structured version Visualization version GIF version | ||
| Description: Value of real subtraction, which is the (unique) real 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| Ref | Expression |
|---|---|
| resubval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2747 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴)) | |
| 2 | 1 | riotabidv 7364 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦) = (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴)) |
| 3 | oveq1 7412 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥)) | |
| 4 | 3 | eqeq1d 2737 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴)) |
| 5 | 4 | riotabidv 7364 | . 2 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) |
| 6 | df-resub 42409 | . 2 ⊢ −ℝ = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦)) | |
| 7 | riotaex 7366 | . 2 ⊢ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) ∈ V | |
| 8 | 2, 5, 6, 7 | ovmpo 7567 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ℩crio 7361 (class class class)co 7405 ℝcr 11128 + caddc 11132 −ℝ cresub 42408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-resub 42409 |
| This theorem is referenced by: rernegcl 42414 renegadd 42415 rersubcl 42421 resubadd 42422 resubf 42424 resubeqsub 42472 |
| Copyright terms: Public domain | W3C validator |