Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubval Structured version   Visualization version   GIF version

Theorem resubval 42078
Description: Value of real subtraction, which is the (unique) real 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem resubval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2738 . . 3 (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴))
21riotabidv 7374 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦) = (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴))
3 oveq1 7423 . . . 4 (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥))
43eqeq1d 2728 . . 3 (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴))
54riotabidv 7374 . 2 (𝑧 = 𝐵 → (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
6 df-resub 42077 . 2 = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦))
7 riotaex 7376 . 2 (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) ∈ V
82, 5, 6, 7ovmpo 7578 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  crio 7371  (class class class)co 7416  cr 11148   + caddc 11152   cresub 42076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-iota 6498  df-fun 6548  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-resub 42077
This theorem is referenced by:  rernegcl  42082  renegadd  42083  rersubcl  42089  resubadd  42090  resubf  42092  resubeqsub  42140
  Copyright terms: Public domain W3C validator