Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubval | Structured version Visualization version GIF version |
Description: Value of real subtraction, which is the (unique) real 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2750 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑧 + 𝑥) = 𝑦 ↔ (𝑧 + 𝑥) = 𝐴)) | |
2 | 1 | riotabidv 7234 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦) = (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴)) |
3 | oveq1 7282 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑧 + 𝑥) = (𝐵 + 𝑥)) | |
4 | 3 | eqeq1d 2740 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑧 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = 𝐴)) |
5 | 4 | riotabidv 7234 | . 2 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝐴) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) |
6 | df-resub 40349 | . 2 ⊢ −ℝ = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (℩𝑥 ∈ ℝ (𝑧 + 𝑥) = 𝑦)) | |
7 | riotaex 7236 | . 2 ⊢ (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) ∈ V | |
8 | 2, 5, 6, 7 | ovmpo 7433 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ℩crio 7231 (class class class)co 7275 ℝcr 10870 + caddc 10874 −ℝ cresub 40348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-resub 40349 |
This theorem is referenced by: rernegcl 40354 renegadd 40355 rersubcl 40361 resubadd 40362 resubf 40364 resubeqsub 40411 |
Copyright terms: Public domain | W3C validator |