Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubf | Structured version Visualization version GIF version |
Description: Real subtraction is an operation on the real numbers. Based on subf 11080. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubf | ⊢ −ℝ :(ℝ × ℝ)⟶ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubval 40058 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 −ℝ 𝑦) = (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥)) | |
2 | rersubcl 40069 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 −ℝ 𝑦) ∈ ℝ) | |
3 | 1, 2 | eqeltrrd 2839 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥) ∈ ℝ) |
4 | 3 | rgen2 3124 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥) ∈ ℝ |
5 | df-resub 40057 | . . 3 ⊢ −ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥)) | |
6 | 5 | fmpo 7838 | . 2 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥) ∈ ℝ ↔ −ℝ :(ℝ × ℝ)⟶ℝ) |
7 | 4, 6 | mpbi 233 | 1 ⊢ −ℝ :(ℝ × ℝ)⟶ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 × cxp 5549 ⟶wf 6376 ℩crio 7169 (class class class)co 7213 ℝcr 10728 + caddc 10732 −ℝ cresub 40056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-addrcl 10790 ax-addass 10794 ax-rnegex 10800 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-resub 40057 |
This theorem is referenced by: subresre 40120 |
Copyright terms: Public domain | W3C validator |