|   | Mathbox for Steven Nguyen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resubf | Structured version Visualization version GIF version | ||
| Description: Real subtraction is an operation on the real numbers. Based on subf 11510. (Contributed by Steven Nguyen, 7-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| resubf | ⊢ −ℝ :(ℝ × ℝ)⟶ℝ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resubval 42397 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 −ℝ 𝑦) = (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥)) | |
| 2 | rersubcl 42408 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 −ℝ 𝑦) ∈ ℝ) | |
| 3 | 1, 2 | eqeltrrd 2842 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥) ∈ ℝ) | 
| 4 | 3 | rgen2 3199 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥) ∈ ℝ | 
| 5 | df-resub 42396 | . . 3 ⊢ −ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥)) | |
| 6 | 5 | fmpo 8093 | . 2 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥) ∈ ℝ ↔ −ℝ :(ℝ × ℝ)⟶ℝ) | 
| 7 | 4, 6 | mpbi 230 | 1 ⊢ −ℝ :(ℝ × ℝ)⟶ℝ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 × cxp 5683 ⟶wf 6557 ℩crio 7387 (class class class)co 7431 ℝcr 11154 + caddc 11158 −ℝ cresub 42395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-addrcl 11216 ax-addass 11220 ax-rnegex 11226 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-resub 42396 | 
| This theorem is referenced by: subresre 42460 | 
| Copyright terms: Public domain | W3C validator |