![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubf | Structured version Visualization version GIF version |
Description: Real subtraction is an operation on the real numbers. Based on subf 11469. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
resubf | ⊢ −ℝ :(ℝ × ℝ)⟶ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubval 41703 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 −ℝ 𝑦) = (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥)) | |
2 | rersubcl 41714 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 −ℝ 𝑦) ∈ ℝ) | |
3 | 1, 2 | eqeltrrd 2833 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥) ∈ ℝ) |
4 | 3 | rgen2 3196 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥) ∈ ℝ |
5 | df-resub 41702 | . . 3 ⊢ −ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥)) | |
6 | 5 | fmpo 8058 | . 2 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥) ∈ ℝ ↔ −ℝ :(ℝ × ℝ)⟶ℝ) |
7 | 4, 6 | mpbi 229 | 1 ⊢ −ℝ :(ℝ × ℝ)⟶ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 × cxp 5674 ⟶wf 6539 ℩crio 7367 (class class class)co 7412 ℝcr 11115 + caddc 11119 −ℝ cresub 41701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-addrcl 11177 ax-addass 11181 ax-rnegex 11187 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 df-resub 41702 |
This theorem is referenced by: subresre 41766 |
Copyright terms: Public domain | W3C validator |