| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rersubcl | Structured version Visualization version GIF version | ||
| Description: Closure for real subtraction. Based on subcl 11396. (Contributed by Steven Nguyen, 7-Jan-2023.) |
| Ref | Expression |
|---|---|
| rersubcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubval 42348 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)) | |
| 2 | resubeu 42358 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) |
| 4 | riotacl 7343 | . . 3 ⊢ (∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴 → (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) ∈ ℝ) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (℩𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) ∈ ℝ) |
| 6 | 1, 5 | eqeltrd 2828 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3349 ℩crio 7325 (class class class)co 7369 ℝcr 11043 + caddc 11047 −ℝ cresub 42346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-addrcl 11105 ax-addass 11109 ax-rnegex 11115 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-resub 42347 |
| This theorem is referenced by: resubf 42362 repncan3 42364 readdsub 42365 reltsub1 42367 resubcan2 42369 resubsub4 42370 rennncan2 42371 renpncan3 42372 reppncan 42374 resubidaddlidlem 42375 resubdi 42377 re1m1e0m0 42378 sn-ltmul2d 42454 |
| Copyright terms: Public domain | W3C validator |