Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rersubcl Structured version   Visualization version   GIF version

Theorem rersubcl 41195
Description: Closure for real subtraction. Based on subcl 11455. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
rersubcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) ∈ ℝ)

Proof of Theorem rersubcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 resubval 41184 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
2 resubeu 41194 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
32ancoms 460 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
4 riotacl 7378 . . 3 (∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴 → (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) ∈ ℝ)
53, 4syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) ∈ ℝ)
61, 5eqeltrd 2834 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  ∃!wreu 3375  crio 7359  (class class class)co 7404  cr 11105   + caddc 11109   cresub 41182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-resscn 11163  ax-addrcl 11167  ax-addass 11171  ax-rnegex 11177  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-resub 41183
This theorem is referenced by:  resubf  41198  repncan3  41200  readdsub  41201  reltsub1  41203  resubcan2  41205  resubsub4  41206  rennncan2  41207  renpncan3  41208  reppncan  41210  resubidaddlidlem  41211  resubdi  41213  re1m1e0m0  41214  sn-ltmul2d  41278
  Copyright terms: Public domain W3C validator