MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetasuplem2 Structured version   Visualization version   GIF version

Theorem noetasuplem2 27237
Description: Lemma for noeta 27246. The restriction of 𝑍 to dom 𝑆 is 𝑆. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetasuplem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetasuplem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetasuplem2 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑍 ↾ dom 𝑆) = 𝑆)
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetasuplem2
StepHypRef Expression
1 noetasuplem.2 . . . 4 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
21reseq1i 5978 . . 3 (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆)
3 resundir 5997 . . 3 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆))
4 dmres 6004 . . . . . 6 dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = (dom 𝑆 ∩ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
5 1oex 8476 . . . . . . . . 9 1o ∈ V
65snnz 4781 . . . . . . . 8 {1o} ≠ ∅
7 dmxp 5929 . . . . . . . 8 ({1o} ≠ ∅ → dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆))
86, 7ax-mp 5 . . . . . . 7 dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆)
98ineq2i 4210 . . . . . 6 (dom 𝑆 ∩ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆))
10 disjdif 4472 . . . . . 6 (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅
114, 9, 103eqtri 2765 . . . . 5 dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
12 relres 6011 . . . . . 6 Rel (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)
13 reldm0 5928 . . . . . 6 (Rel (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) → ((((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅ ↔ dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅))
1412, 13ax-mp 5 . . . . 5 ((((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅ ↔ dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅)
1511, 14mpbir 230 . . . 4 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
1615uneq2i 4161 . . 3 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
172, 3, 163eqtri 2765 . 2 (𝑍 ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
18 noetasuplem.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1918nosupno 27206 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
20193adant3 1133 . . . . . 6 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 No )
21 nofun 27152 . . . . . 6 (𝑆 No → Fun 𝑆)
2220, 21syl 17 . . . . 5 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun 𝑆)
23 funrel 6566 . . . . 5 (Fun 𝑆 → Rel 𝑆)
24 resdm 6027 . . . . 5 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
2522, 23, 243syl 18 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ↾ dom 𝑆) = 𝑆)
2625uneq1d 4163 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ∪ ∅))
27 un0 4391 . . 3 (𝑆 ∪ ∅) = 𝑆
2826, 27eqtrdi 2789 . 2 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑆 ↾ dom 𝑆) ∪ ∅) = 𝑆)
2917, 28eqtrid 2785 1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑍 ↾ dom 𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2710  wne 2941  wral 3062  wrex 3071  Vcvv 3475  cdif 3946  cun 3947  cin 3948  wss 3949  c0 4323  ifcif 4529  {csn 4629  cop 4635   cuni 4909   class class class wbr 5149  cmpt 5232   × cxp 5675  dom cdm 5677  cres 5679  cima 5680  Rel wrel 5682  suc csuc 6367  cio 6494  Fun wfun 6538  cfv 6544  crio 7364  1oc1o 8459  2oc2o 8460   No csur 27143   <s cslt 27144   bday cbday 27145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-1o 8466  df-2o 8467  df-no 27146  df-slt 27147  df-bday 27148
This theorem is referenced by:  noetalem1  27244
  Copyright terms: Public domain W3C validator