MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetasuplem2 Structured version   Visualization version   GIF version

Theorem noetasuplem2 27244
Description: Lemma for noeta 27253. The restriction of 𝑍 to dom 𝑆 is 𝑆. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetasuplem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetasuplem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetasuplem2 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑍 ↾ dom 𝑆) = 𝑆)
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetasuplem2
StepHypRef Expression
1 noetasuplem.2 . . . 4 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
21reseq1i 5977 . . 3 (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆)
3 resundir 5996 . . 3 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆))
4 dmres 6003 . . . . . 6 dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = (dom 𝑆 ∩ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
5 1oex 8478 . . . . . . . . 9 1o ∈ V
65snnz 4780 . . . . . . . 8 {1o} ≠ ∅
7 dmxp 5928 . . . . . . . 8 ({1o} ≠ ∅ → dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆))
86, 7ax-mp 5 . . . . . . 7 dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆)
98ineq2i 4209 . . . . . 6 (dom 𝑆 ∩ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆))
10 disjdif 4471 . . . . . 6 (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅
114, 9, 103eqtri 2764 . . . . 5 dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
12 relres 6010 . . . . . 6 Rel (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)
13 reldm0 5927 . . . . . 6 (Rel (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) → ((((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅ ↔ dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅))
1412, 13ax-mp 5 . . . . 5 ((((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅ ↔ dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅)
1511, 14mpbir 230 . . . 4 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
1615uneq2i 4160 . . 3 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
172, 3, 163eqtri 2764 . 2 (𝑍 ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
18 noetasuplem.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1918nosupno 27213 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
20193adant3 1132 . . . . . 6 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 No )
21 nofun 27159 . . . . . 6 (𝑆 No → Fun 𝑆)
2220, 21syl 17 . . . . 5 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun 𝑆)
23 funrel 6565 . . . . 5 (Fun 𝑆 → Rel 𝑆)
24 resdm 6026 . . . . 5 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
2522, 23, 243syl 18 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ↾ dom 𝑆) = 𝑆)
2625uneq1d 4162 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ∪ ∅))
27 un0 4390 . . 3 (𝑆 ∪ ∅) = 𝑆
2826, 27eqtrdi 2788 . 2 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑆 ↾ dom 𝑆) ∪ ∅) = 𝑆)
2917, 28eqtrid 2784 1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑍 ↾ dom 𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2709  wne 2940  wral 3061  wrex 3070  Vcvv 3474  cdif 3945  cun 3946  cin 3947  wss 3948  c0 4322  ifcif 4528  {csn 4628  cop 4634   cuni 4908   class class class wbr 5148  cmpt 5231   × cxp 5674  dom cdm 5676  cres 5678  cima 5679  Rel wrel 5681  suc csuc 6366  cio 6493  Fun wfun 6537  cfv 6543  crio 7366  1oc1o 8461  2oc2o 8462   No csur 27150   <s cslt 27151   bday cbday 27152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-1o 8468  df-2o 8469  df-no 27153  df-slt 27154  df-bday 27155
This theorem is referenced by:  noetalem1  27251
  Copyright terms: Public domain W3C validator