Proof of Theorem noetasuplem2
Step | Hyp | Ref
| Expression |
1 | | noetasuplem.2 |
. . . 4
⊢ 𝑍 = (𝑆 ∪ ((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) × {1o})) |
2 | 1 | reseq1i 5819 |
. . 3
⊢ (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom
𝑆) |
3 | | resundir 5838 |
. . 3
⊢ ((𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom
𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) |
4 | | dmres 5845 |
. . . . . 6
⊢ dom
(((suc ∪ ( bday
“ 𝐵) ∖ dom
𝑆) × {1o})
↾ dom 𝑆) = (dom 𝑆 ∩ dom ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) |
5 | | 1oex 8120 |
. . . . . . . . 9
⊢
1o ∈ V |
6 | 5 | snnz 4669 |
. . . . . . . 8
⊢
{1o} ≠ ∅ |
7 | | dmxp 5770 |
. . . . . . . 8
⊢
({1o} ≠ ∅ → dom ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o}) = (suc ∪ ( bday “ 𝐵) ∖ dom 𝑆)) |
8 | 6, 7 | ax-mp 5 |
. . . . . . 7
⊢ dom ((suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o}) = (suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) |
9 | 8 | ineq2i 4114 |
. . . . . 6
⊢ (dom
𝑆 ∩ dom ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∩ (suc ∪ ( bday “ 𝐵) ∖ dom 𝑆)) |
10 | | disjdif 4368 |
. . . . . 6
⊢ (dom
𝑆 ∩ (suc ∪ ( bday “ 𝐵) ∖ dom 𝑆)) = ∅ |
11 | 4, 9, 10 | 3eqtri 2785 |
. . . . 5
⊢ dom
(((suc ∪ ( bday
“ 𝐵) ∖ dom
𝑆) × {1o})
↾ dom 𝑆) =
∅ |
12 | | relres 5852 |
. . . . . 6
⊢ Rel
(((suc ∪ ( bday
“ 𝐵) ∖ dom
𝑆) × {1o})
↾ dom 𝑆) |
13 | | reldm0 5769 |
. . . . . 6
⊢ (Rel
(((suc ∪ ( bday
“ 𝐵) ∖ dom
𝑆) × {1o})
↾ dom 𝑆) →
((((suc ∪ ( bday
“ 𝐵) ∖ dom
𝑆) × {1o})
↾ dom 𝑆) = ∅
↔ dom (((suc ∪ ( bday
“ 𝐵) ∖
dom 𝑆) ×
{1o}) ↾ dom 𝑆) = ∅)) |
14 | 12, 13 | ax-mp 5 |
. . . . 5
⊢ ((((suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅ ↔ dom (((suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅) |
15 | 11, 14 | mpbir 234 |
. . . 4
⊢ (((suc
∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅ |
16 | 15 | uneq2i 4065 |
. . 3
⊢ ((𝑆 ↾ dom 𝑆) ∪ (((suc ∪
( bday “ 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅) |
17 | 2, 3, 16 | 3eqtri 2785 |
. 2
⊢ (𝑍 ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ ∅) |
18 | | noetasuplem.1 |
. . . . . . . 8
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
19 | 18 | nosupno 33471 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
20 | 19 | 3adant3 1129 |
. . . . . 6
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
𝑆 ∈ No ) |
21 | | nofun 33417 |
. . . . . 6
⊢ (𝑆 ∈
No → Fun 𝑆) |
22 | 20, 21 | syl 17 |
. . . . 5
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
Fun 𝑆) |
23 | | funrel 6352 |
. . . . 5
⊢ (Fun
𝑆 → Rel 𝑆) |
24 | | resdm 5868 |
. . . . 5
⊢ (Rel
𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆) |
25 | 22, 23, 24 | 3syl 18 |
. . . 4
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
(𝑆 ↾ dom 𝑆) = 𝑆) |
26 | 25 | uneq1d 4067 |
. . 3
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ∪
∅)) |
27 | | un0 4286 |
. . 3
⊢ (𝑆 ∪ ∅) = 𝑆 |
28 | 26, 27 | eqtrdi 2809 |
. 2
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
((𝑆 ↾ dom 𝑆) ∪ ∅) = 𝑆) |
29 | 17, 28 | syl5eq 2805 |
1
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝐵 ∈ V) →
(𝑍 ↾ dom 𝑆) = 𝑆) |