Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetasuplem2 Structured version   Visualization version   GIF version

Theorem noetasuplem2 33937
Description: Lemma for noeta 33946. The restriction of 𝑍 to dom 𝑆 is 𝑆. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypotheses
Ref Expression
noetasuplem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetasuplem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetasuplem2 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑍 ↾ dom 𝑆) = 𝑆)
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetasuplem2
StepHypRef Expression
1 noetasuplem.2 . . . 4 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
21reseq1i 5887 . . 3 (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆)
3 resundir 5906 . . 3 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆))
4 dmres 5913 . . . . . 6 dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = (dom 𝑆 ∩ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
5 1oex 8307 . . . . . . . . 9 1o ∈ V
65snnz 4712 . . . . . . . 8 {1o} ≠ ∅
7 dmxp 5838 . . . . . . . 8 ({1o} ≠ ∅ → dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆))
86, 7ax-mp 5 . . . . . . 7 dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) = (suc ( bday 𝐵) ∖ dom 𝑆)
98ineq2i 4143 . . . . . 6 (dom 𝑆 ∩ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆))
10 disjdif 4405 . . . . . 6 (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅
114, 9, 103eqtri 2770 . . . . 5 dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
12 relres 5920 . . . . . 6 Rel (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)
13 reldm0 5837 . . . . . 6 (Rel (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) → ((((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅ ↔ dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅))
1412, 13ax-mp 5 . . . . 5 ((((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅ ↔ dom (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅)
1511, 14mpbir 230 . . . 4 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
1615uneq2i 4094 . . 3 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
172, 3, 163eqtri 2770 . 2 (𝑍 ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
18 noetasuplem.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
1918nosupno 33906 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
20193adant3 1131 . . . . . 6 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 No )
21 nofun 33852 . . . . . 6 (𝑆 No → Fun 𝑆)
2220, 21syl 17 . . . . 5 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun 𝑆)
23 funrel 6451 . . . . 5 (Fun 𝑆 → Rel 𝑆)
24 resdm 5936 . . . . 5 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
2522, 23, 243syl 18 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ↾ dom 𝑆) = 𝑆)
2625uneq1d 4096 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ∪ ∅))
27 un0 4324 . . 3 (𝑆 ∪ ∅) = 𝑆
2826, 27eqtrdi 2794 . 2 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝑆 ↾ dom 𝑆) ∪ ∅) = 𝑆)
2917, 28eqtrid 2790 1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑍 ↾ dom 𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  ifcif 4459  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  cres 5591  cima 5592  Rel wrel 5594  suc csuc 6268  cio 6389  Fun wfun 6427  cfv 6433  crio 7231  1oc1o 8290  2oc2o 8291   No csur 33843   <s cslt 33844   bday cbday 33845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848
This theorem is referenced by:  noetalem1  33944
  Copyright terms: Public domain W3C validator