MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supisolem Structured version   Visualization version   GIF version

Theorem supisolem 9467
Description: Lemma for supiso 9469. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
Assertion
Ref Expression
supisolem ((𝜑𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
Distinct variable groups:   𝑤,𝑣,𝑦,𝑧,𝐴   𝑣,𝐶,𝑤,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝜑,𝑤   𝑣,𝐹,𝑤,𝑦,𝑧   𝑤,𝑅,𝑦,𝑧   𝑣,𝑆,𝑤,𝑦,𝑧   𝑣,𝐵,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣)   𝐷(𝑣)   𝑅(𝑣)

Proof of Theorem supisolem
StepHypRef Expression
1 supiso.1 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 supiso.2 . . 3 (𝜑𝐶𝐴)
31, 2jca 512 . 2 (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴))
4 simpll 765 . . . . . . . 8 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
54adantr 481 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
6 simplr 767 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝐷𝐴)
7 simplr 767 . . . . . . . 8 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐶𝐴)
87sselda 3982 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝑦𝐴)
9 isorel 7322 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐷𝐴𝑦𝐴)) → (𝐷𝑅𝑦 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
105, 6, 8, 9syl12anc 835 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → (𝐷𝑅𝑦 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
1110notbid 317 . . . . 5 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → (¬ 𝐷𝑅𝑦 ↔ ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
1211ralbidva 3175 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
13 isof1o 7319 . . . . . . 7 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
144, 13syl 17 . . . . . 6 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹:𝐴1-1-onto𝐵)
15 f1ofn 6834 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
1614, 15syl 17 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹 Fn 𝐴)
17 breq2 5152 . . . . . . 7 (𝑤 = (𝐹𝑦) → ((𝐹𝐷)𝑆𝑤 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
1817notbid 317 . . . . . 6 (𝑤 = (𝐹𝑦) → (¬ (𝐹𝐷)𝑆𝑤 ↔ ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
1918ralima 7239 . . . . 5 ((𝐹 Fn 𝐴𝐶𝐴) → (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
2016, 7, 19syl2anc 584 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
2112, 20bitr4d 281 . . 3 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ↔ ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤))
224adantr 481 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
23 simpr 485 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
24 simplr 767 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐷𝐴)
25 isorel 7322 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑦𝐴𝐷𝐴)) → (𝑦𝑅𝐷 ↔ (𝐹𝑦)𝑆(𝐹𝐷)))
2622, 23, 24, 25syl12anc 835 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (𝑦𝑅𝐷 ↔ (𝐹𝑦)𝑆(𝐹𝐷)))
2722adantr 481 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
28 simplr 767 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝑦𝐴)
297adantr 481 . . . . . . . . . 10 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐶𝐴)
3029sselda 3982 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝑧𝐴)
31 isorel 7322 . . . . . . . . 9 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑦𝐴𝑧𝐴)) → (𝑦𝑅𝑧 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3227, 28, 30, 31syl12anc 835 . . . . . . . 8 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → (𝑦𝑅𝑧 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3332rexbidva 3176 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑧𝐶 𝑦𝑅𝑧 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3416adantr 481 . . . . . . . 8 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐹 Fn 𝐴)
35 breq2 5152 . . . . . . . . 9 (𝑣 = (𝐹𝑧) → ((𝐹𝑦)𝑆𝑣 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3635rexima 7238 . . . . . . . 8 ((𝐹 Fn 𝐴𝐶𝐴) → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3734, 29, 36syl2anc 584 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3833, 37bitr4d 281 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑧𝐶 𝑦𝑅𝑧 ↔ ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣))
3926, 38imbi12d 344 . . . . 5 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → ((𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣)))
4039ralbidva 3175 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣)))
41 f1ofo 6840 . . . . 5 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
42 breq1 5151 . . . . . . 7 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)𝑆(𝐹𝐷) ↔ 𝑤𝑆(𝐹𝐷)))
43 breq1 5151 . . . . . . . 8 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)𝑆𝑣𝑤𝑆𝑣))
4443rexbidv 3178 . . . . . . 7 ((𝐹𝑦) = 𝑤 → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))
4542, 44imbi12d 344 . . . . . 6 ((𝐹𝑦) = 𝑤 → (((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4645cbvfo 7286 . . . . 5 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4714, 41, 463syl 18 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4840, 47bitrd 278 . . 3 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4921, 48anbi12d 631 . 2 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
503, 49sylan 580 1 ((𝜑𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  wss 3948   class class class wbr 5148  cima 5679   Fn wfn 6538  ontowfo 6541  1-1-ontowf1o 6542  cfv 6543   Isom wiso 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552
This theorem is referenced by:  supisoex  9468  supiso  9469
  Copyright terms: Public domain W3C validator