Proof of Theorem supisolem
| Step | Hyp | Ref
| Expression |
| 1 | | supiso.1 |
. . 3
⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| 2 | | supiso.2 |
. . 3
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 3 | 1, 2 | jca 511 |
. 2
⊢ (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴)) |
| 4 | | simpll 766 |
. . . . . . . 8
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| 5 | 4 | adantr 480 |
. . . . . . 7
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐶) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| 6 | | simplr 768 |
. . . . . . 7
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐶) → 𝐷 ∈ 𝐴) |
| 7 | | simplr 768 |
. . . . . . . 8
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → 𝐶 ⊆ 𝐴) |
| 8 | 7 | sselda 3963 |
. . . . . . 7
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐶) → 𝑦 ∈ 𝐴) |
| 9 | | isorel 7324 |
. . . . . . 7
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐷𝑅𝑦 ↔ (𝐹‘𝐷)𝑆(𝐹‘𝑦))) |
| 10 | 5, 6, 8, 9 | syl12anc 836 |
. . . . . 6
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐶) → (𝐷𝑅𝑦 ↔ (𝐹‘𝐷)𝑆(𝐹‘𝑦))) |
| 11 | 10 | notbid 318 |
. . . . 5
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐶) → (¬ 𝐷𝑅𝑦 ↔ ¬ (𝐹‘𝐷)𝑆(𝐹‘𝑦))) |
| 12 | 11 | ralbidva 3162 |
. . . 4
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → (∀𝑦 ∈ 𝐶 ¬ 𝐷𝑅𝑦 ↔ ∀𝑦 ∈ 𝐶 ¬ (𝐹‘𝐷)𝑆(𝐹‘𝑦))) |
| 13 | | isof1o 7321 |
. . . . . . 7
⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
| 14 | 4, 13 | syl 17 |
. . . . . 6
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → 𝐹:𝐴–1-1-onto→𝐵) |
| 15 | | f1ofn 6824 |
. . . . . 6
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| 16 | 14, 15 | syl 17 |
. . . . 5
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → 𝐹 Fn 𝐴) |
| 17 | | breq2 5128 |
. . . . . . 7
⊢ (𝑤 = (𝐹‘𝑦) → ((𝐹‘𝐷)𝑆𝑤 ↔ (𝐹‘𝐷)𝑆(𝐹‘𝑦))) |
| 18 | 17 | notbid 318 |
. . . . . 6
⊢ (𝑤 = (𝐹‘𝑦) → (¬ (𝐹‘𝐷)𝑆𝑤 ↔ ¬ (𝐹‘𝐷)𝑆(𝐹‘𝑦))) |
| 19 | 18 | ralima 7234 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝐷)𝑆𝑤 ↔ ∀𝑦 ∈ 𝐶 ¬ (𝐹‘𝐷)𝑆(𝐹‘𝑦))) |
| 20 | 16, 7, 19 | syl2anc 584 |
. . . 4
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝐷)𝑆𝑤 ↔ ∀𝑦 ∈ 𝐶 ¬ (𝐹‘𝐷)𝑆(𝐹‘𝑦))) |
| 21 | 12, 20 | bitr4d 282 |
. . 3
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → (∀𝑦 ∈ 𝐶 ¬ 𝐷𝑅𝑦 ↔ ∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝐷)𝑆𝑤)) |
| 22 | 4 | adantr 480 |
. . . . . . 7
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| 23 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 24 | | simplr 768 |
. . . . . . 7
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐷 ∈ 𝐴) |
| 25 | | isorel 7324 |
. . . . . . 7
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑦𝑅𝐷 ↔ (𝐹‘𝑦)𝑆(𝐹‘𝐷))) |
| 26 | 22, 23, 24, 25 | syl12anc 836 |
. . . . . 6
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝐷 ↔ (𝐹‘𝑦)𝑆(𝐹‘𝐷))) |
| 27 | 22 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐶) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| 28 | | simplr 768 |
. . . . . . . . 9
⊢
(((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐶) → 𝑦 ∈ 𝐴) |
| 29 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐶 ⊆ 𝐴) |
| 30 | 29 | sselda 3963 |
. . . . . . . . 9
⊢
(((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐴) |
| 31 | | isorel 7324 |
. . . . . . . . 9
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦𝑅𝑧 ↔ (𝐹‘𝑦)𝑆(𝐹‘𝑧))) |
| 32 | 27, 28, 30, 31 | syl12anc 836 |
. . . . . . . 8
⊢
(((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐶) → (𝑦𝑅𝑧 ↔ (𝐹‘𝑦)𝑆(𝐹‘𝑧))) |
| 33 | 32 | rexbidva 3163 |
. . . . . . 7
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (∃𝑧 ∈ 𝐶 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ 𝐶 (𝐹‘𝑦)𝑆(𝐹‘𝑧))) |
| 34 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐹 Fn 𝐴) |
| 35 | | breq2 5128 |
. . . . . . . . 9
⊢ (𝑣 = (𝐹‘𝑧) → ((𝐹‘𝑦)𝑆𝑣 ↔ (𝐹‘𝑦)𝑆(𝐹‘𝑧))) |
| 36 | 35 | rexima 7235 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (∃𝑣 ∈ (𝐹 “ 𝐶)(𝐹‘𝑦)𝑆𝑣 ↔ ∃𝑧 ∈ 𝐶 (𝐹‘𝑦)𝑆(𝐹‘𝑧))) |
| 37 | 34, 29, 36 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (∃𝑣 ∈ (𝐹 “ 𝐶)(𝐹‘𝑦)𝑆𝑣 ↔ ∃𝑧 ∈ 𝐶 (𝐹‘𝑦)𝑆(𝐹‘𝑧))) |
| 38 | 33, 37 | bitr4d 282 |
. . . . . 6
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (∃𝑧 ∈ 𝐶 𝑦𝑅𝑧 ↔ ∃𝑣 ∈ (𝐹 “ 𝐶)(𝐹‘𝑦)𝑆𝑣)) |
| 39 | 26, 38 | imbi12d 344 |
. . . . 5
⊢ ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑦𝑅𝐷 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧) ↔ ((𝐹‘𝑦)𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)(𝐹‘𝑦)𝑆𝑣))) |
| 40 | 39 | ralbidva 3162 |
. . . 4
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝐷 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 ((𝐹‘𝑦)𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)(𝐹‘𝑦)𝑆𝑣))) |
| 41 | | f1ofo 6830 |
. . . . 5
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–onto→𝐵) |
| 42 | | breq1 5127 |
. . . . . . 7
⊢ ((𝐹‘𝑦) = 𝑤 → ((𝐹‘𝑦)𝑆(𝐹‘𝐷) ↔ 𝑤𝑆(𝐹‘𝐷))) |
| 43 | | breq1 5127 |
. . . . . . . 8
⊢ ((𝐹‘𝑦) = 𝑤 → ((𝐹‘𝑦)𝑆𝑣 ↔ 𝑤𝑆𝑣)) |
| 44 | 43 | rexbidv 3165 |
. . . . . . 7
⊢ ((𝐹‘𝑦) = 𝑤 → (∃𝑣 ∈ (𝐹 “ 𝐶)(𝐹‘𝑦)𝑆𝑣 ↔ ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)) |
| 45 | 42, 44 | imbi12d 344 |
. . . . . 6
⊢ ((𝐹‘𝑦) = 𝑤 → (((𝐹‘𝑦)𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)(𝐹‘𝑦)𝑆𝑣) ↔ (𝑤𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |
| 46 | 45 | cbvfo 7287 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑦 ∈ 𝐴 ((𝐹‘𝑦)𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)(𝐹‘𝑦)𝑆𝑣) ↔ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |
| 47 | 14, 41, 46 | 3syl 18 |
. . . 4
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ((𝐹‘𝑦)𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)(𝐹‘𝑦)𝑆𝑣) ↔ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |
| 48 | 40, 47 | bitrd 279 |
. . 3
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑦𝑅𝐷 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧) ↔ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) |
| 49 | 21, 48 | anbi12d 632 |
. 2
⊢ (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝐷 ∈ 𝐴) → ((∀𝑦 ∈ 𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐷 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝐷)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |
| 50 | 3, 49 | sylan 580 |
1
⊢ ((𝜑 ∧ 𝐷 ∈ 𝐴) → ((∀𝑦 ∈ 𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐷 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝐷)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) |