MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmflf Structured version   Visualization version   GIF version

Theorem lmflf 23263
Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lmflf.1 𝑍 = (ℤ𝑀)
lmflf.2 𝐿 = (𝑍filGen(ℤ𝑍))
Assertion
Ref Expression
lmflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))

Proof of Theorem lmflf
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 12687 . . . . . . . 8 :ℤ⟶𝒫 ℤ
2 ffn 6652 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
31, 2ax-mp 5 . . . . . . 7 Fn ℤ
4 lmflf.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
5 uzssz 12705 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
64, 5eqsstri 3966 . . . . . . 7 𝑍 ⊆ ℤ
7 imaeq2 5996 . . . . . . . . 9 (𝑦 = (ℤ𝑗) → (𝐹𝑦) = (𝐹 “ (ℤ𝑗)))
87sseq1d 3963 . . . . . . . 8 (𝑦 = (ℤ𝑗) → ((𝐹𝑦) ⊆ 𝑥 ↔ (𝐹 “ (ℤ𝑗)) ⊆ 𝑥))
98rexima 7170 . . . . . . 7 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥 ↔ ∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥))
103, 6, 9mp2an 689 . . . . . 6 (∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥 ↔ ∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥)
11 simpl3 1192 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → 𝐹:𝑍𝑋)
1211ffund 6656 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → Fun 𝐹)
13 uzss 12707 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
1413, 4eleq2s 2855 . . . . . . . . . 10 (𝑗𝑍 → (ℤ𝑗) ⊆ (ℤ𝑀))
1514adantl 482 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (ℤ𝑗) ⊆ (ℤ𝑀))
1611fdmd 6663 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → dom 𝐹 = 𝑍)
1716, 4eqtrdi 2792 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → dom 𝐹 = (ℤ𝑀))
1815, 17sseqtrrd 3973 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (ℤ𝑗) ⊆ dom 𝐹)
19 funimass4 6891 . . . . . . . 8 ((Fun 𝐹 ∧ (ℤ𝑗) ⊆ dom 𝐹) → ((𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2012, 18, 19syl2anc 584 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → ((𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2120rexbidva 3169 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2210, 21bitr2id 283 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ↔ ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))
2322imbi2d 340 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → ((𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥) ↔ (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥)))
2423ralbidv 3170 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥) ↔ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥)))
2524anbi2d 629 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → ((𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥)) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
26 simp1 1135 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝐽 ∈ (TopOn‘𝑋))
27 simp2 1136 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝑀 ∈ ℤ)
28 simp3 1137 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝐹:𝑍𝑋)
29 eqidd 2737 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
3026, 4, 27, 28, 29lmbrf 22518 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))))
314uzfbas 23156 . . 3 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
32 lmflf.2 . . . 4 𝐿 = (𝑍filGen(ℤ𝑍))
3332flffbas 23253 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (ℤ𝑍) ∈ (fBas‘𝑍) ∧ 𝐹:𝑍𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
3431, 33syl3an2 1163 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
3525, 30, 343bitr4d 310 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wrex 3070  wss 3898  𝒫 cpw 4548   class class class wbr 5093  dom cdm 5621  cima 5624  Fun wfun 6474   Fn wfn 6475  wf 6476  cfv 6480  (class class class)co 7338  cz 12421  cuz 12684  fBascfbas 20692  filGencfg 20693  TopOnctopon 22166  𝑡clm 22484   fLimf cflf 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-i2m1 11041  ax-1ne0 11042  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-er 8570  df-map 8689  df-pm 8690  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-neg 11310  df-nn 12076  df-z 12422  df-uz 12685  df-rest 17231  df-fbas 20701  df-fg 20702  df-top 22150  df-topon 22167  df-ntr 22278  df-nei 22356  df-lm 22487  df-fil 23104  df-fm 23196  df-flim 23197  df-flf 23198
This theorem is referenced by:  cmetcaulem  24559
  Copyright terms: Public domain W3C validator