MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmflf Structured version   Visualization version   GIF version

Theorem lmflf 23908
Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lmflf.1 𝑍 = (ℤ𝑀)
lmflf.2 𝐿 = (𝑍filGen(ℤ𝑍))
Assertion
Ref Expression
lmflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))

Proof of Theorem lmflf
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 12756 . . . . . . . 8 :ℤ⟶𝒫 ℤ
2 ffn 6656 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
31, 2ax-mp 5 . . . . . . 7 Fn ℤ
4 lmflf.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
5 uzssz 12774 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
64, 5eqsstri 3984 . . . . . . 7 𝑍 ⊆ ℤ
7 imaeq2 6011 . . . . . . . . 9 (𝑦 = (ℤ𝑗) → (𝐹𝑦) = (𝐹 “ (ℤ𝑗)))
87sseq1d 3969 . . . . . . . 8 (𝑦 = (ℤ𝑗) → ((𝐹𝑦) ⊆ 𝑥 ↔ (𝐹 “ (ℤ𝑗)) ⊆ 𝑥))
98rexima 7178 . . . . . . 7 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥 ↔ ∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥))
103, 6, 9mp2an 692 . . . . . 6 (∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥 ↔ ∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥)
11 simpl3 1194 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → 𝐹:𝑍𝑋)
1211ffund 6660 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → Fun 𝐹)
13 uzss 12776 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
1413, 4eleq2s 2846 . . . . . . . . . 10 (𝑗𝑍 → (ℤ𝑗) ⊆ (ℤ𝑀))
1514adantl 481 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (ℤ𝑗) ⊆ (ℤ𝑀))
1611fdmd 6666 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → dom 𝐹 = 𝑍)
1716, 4eqtrdi 2780 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → dom 𝐹 = (ℤ𝑀))
1815, 17sseqtrrd 3975 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (ℤ𝑗) ⊆ dom 𝐹)
19 funimass4 6891 . . . . . . . 8 ((Fun 𝐹 ∧ (ℤ𝑗) ⊆ dom 𝐹) → ((𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2012, 18, 19syl2anc 584 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → ((𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2120rexbidva 3151 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2210, 21bitr2id 284 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ↔ ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))
2322imbi2d 340 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → ((𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥) ↔ (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥)))
2423ralbidv 3152 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥) ↔ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥)))
2524anbi2d 630 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → ((𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥)) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
26 simp1 1136 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝐽 ∈ (TopOn‘𝑋))
27 simp2 1137 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝑀 ∈ ℤ)
28 simp3 1138 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝐹:𝑍𝑋)
29 eqidd 2730 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
3026, 4, 27, 28, 29lmbrf 23163 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))))
314uzfbas 23801 . . 3 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
32 lmflf.2 . . . 4 𝐿 = (𝑍filGen(ℤ𝑍))
3332flffbas 23898 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (ℤ𝑍) ∈ (fBas‘𝑍) ∧ 𝐹:𝑍𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
3431, 33syl3an2 1164 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
3525, 30, 343bitr4d 311 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905  𝒫 cpw 4553   class class class wbr 5095  dom cdm 5623  cima 5626  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cz 12489  cuz 12753  fBascfbas 21267  filGencfg 21268  TopOnctopon 22813  𝑡clm 23129   fLimf cflf 23838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-i2m1 11096  ax-1ne0 11097  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-neg 11368  df-nn 12147  df-z 12490  df-uz 12754  df-rest 17344  df-fbas 21276  df-fg 21277  df-top 22797  df-topon 22814  df-ntr 22923  df-nei 23001  df-lm 23132  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843
This theorem is referenced by:  cmetcaulem  25204
  Copyright terms: Public domain W3C validator