MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmflf Structured version   Visualization version   GIF version

Theorem lmflf 23156
Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lmflf.1 𝑍 = (ℤ𝑀)
lmflf.2 𝐿 = (𝑍filGen(ℤ𝑍))
Assertion
Ref Expression
lmflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))

Proof of Theorem lmflf
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 12585 . . . . . . . 8 :ℤ⟶𝒫 ℤ
2 ffn 6600 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
31, 2ax-mp 5 . . . . . . 7 Fn ℤ
4 lmflf.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
5 uzssz 12603 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
64, 5eqsstri 3955 . . . . . . 7 𝑍 ⊆ ℤ
7 imaeq2 5965 . . . . . . . . 9 (𝑦 = (ℤ𝑗) → (𝐹𝑦) = (𝐹 “ (ℤ𝑗)))
87sseq1d 3952 . . . . . . . 8 (𝑦 = (ℤ𝑗) → ((𝐹𝑦) ⊆ 𝑥 ↔ (𝐹 “ (ℤ𝑗)) ⊆ 𝑥))
98rexima 7113 . . . . . . 7 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥 ↔ ∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥))
103, 6, 9mp2an 689 . . . . . 6 (∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥 ↔ ∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥)
11 simpl3 1192 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → 𝐹:𝑍𝑋)
1211ffund 6604 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → Fun 𝐹)
13 uzss 12605 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
1413, 4eleq2s 2857 . . . . . . . . . 10 (𝑗𝑍 → (ℤ𝑗) ⊆ (ℤ𝑀))
1514adantl 482 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (ℤ𝑗) ⊆ (ℤ𝑀))
1611fdmd 6611 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → dom 𝐹 = 𝑍)
1716, 4eqtrdi 2794 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → dom 𝐹 = (ℤ𝑀))
1815, 17sseqtrrd 3962 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (ℤ𝑗) ⊆ dom 𝐹)
19 funimass4 6834 . . . . . . . 8 ((Fun 𝐹 ∧ (ℤ𝑗) ⊆ dom 𝐹) → ((𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2012, 18, 19syl2anc 584 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → ((𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2120rexbidva 3225 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2210, 21bitr2id 284 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ↔ ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))
2322imbi2d 341 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → ((𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥) ↔ (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥)))
2423ralbidv 3112 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥) ↔ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥)))
2524anbi2d 629 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → ((𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥)) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
26 simp1 1135 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝐽 ∈ (TopOn‘𝑋))
27 simp2 1136 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝑀 ∈ ℤ)
28 simp3 1137 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝐹:𝑍𝑋)
29 eqidd 2739 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
3026, 4, 27, 28, 29lmbrf 22411 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))))
314uzfbas 23049 . . 3 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
32 lmflf.2 . . . 4 𝐿 = (𝑍filGen(ℤ𝑍))
3332flffbas 23146 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (ℤ𝑍) ∈ (fBas‘𝑍) ∧ 𝐹:𝑍𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
3431, 33syl3an2 1163 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
3525, 30, 343bitr4d 311 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  𝒫 cpw 4533   class class class wbr 5074  dom cdm 5589  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cz 12319  cuz 12582  fBascfbas 20585  filGencfg 20586  TopOnctopon 22059  𝑡clm 22377   fLimf cflf 23086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-i2m1 10939  ax-1ne0 10940  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-neg 11208  df-nn 11974  df-z 12320  df-uz 12583  df-rest 17133  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-ntr 22171  df-nei 22249  df-lm 22380  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091
This theorem is referenced by:  cmetcaulem  24452
  Copyright terms: Public domain W3C validator