MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmflf Structured version   Visualization version   GIF version

Theorem lmflf 23899
Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lmflf.1 𝑍 = (ℤ𝑀)
lmflf.2 𝐿 = (𝑍filGen(ℤ𝑍))
Assertion
Ref Expression
lmflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))

Proof of Theorem lmflf
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 12803 . . . . . . . 8 :ℤ⟶𝒫 ℤ
2 ffn 6691 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
31, 2ax-mp 5 . . . . . . 7 Fn ℤ
4 lmflf.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
5 uzssz 12821 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
64, 5eqsstri 3996 . . . . . . 7 𝑍 ⊆ ℤ
7 imaeq2 6030 . . . . . . . . 9 (𝑦 = (ℤ𝑗) → (𝐹𝑦) = (𝐹 “ (ℤ𝑗)))
87sseq1d 3981 . . . . . . . 8 (𝑦 = (ℤ𝑗) → ((𝐹𝑦) ⊆ 𝑥 ↔ (𝐹 “ (ℤ𝑗)) ⊆ 𝑥))
98rexima 7215 . . . . . . 7 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥 ↔ ∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥))
103, 6, 9mp2an 692 . . . . . 6 (∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥 ↔ ∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥)
11 simpl3 1194 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → 𝐹:𝑍𝑋)
1211ffund 6695 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → Fun 𝐹)
13 uzss 12823 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
1413, 4eleq2s 2847 . . . . . . . . . 10 (𝑗𝑍 → (ℤ𝑗) ⊆ (ℤ𝑀))
1514adantl 481 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (ℤ𝑗) ⊆ (ℤ𝑀))
1611fdmd 6701 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → dom 𝐹 = 𝑍)
1716, 4eqtrdi 2781 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → dom 𝐹 = (ℤ𝑀))
1815, 17sseqtrrd 3987 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (ℤ𝑗) ⊆ dom 𝐹)
19 funimass4 6928 . . . . . . . 8 ((Fun 𝐹 ∧ (ℤ𝑗) ⊆ dom 𝐹) → ((𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2012, 18, 19syl2anc 584 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → ((𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2120rexbidva 3156 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2210, 21bitr2id 284 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ↔ ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))
2322imbi2d 340 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → ((𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥) ↔ (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥)))
2423ralbidv 3157 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥) ↔ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥)))
2524anbi2d 630 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → ((𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥)) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
26 simp1 1136 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝐽 ∈ (TopOn‘𝑋))
27 simp2 1137 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝑀 ∈ ℤ)
28 simp3 1138 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝐹:𝑍𝑋)
29 eqidd 2731 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
3026, 4, 27, 28, 29lmbrf 23154 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))))
314uzfbas 23792 . . 3 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
32 lmflf.2 . . . 4 𝐿 = (𝑍filGen(ℤ𝑍))
3332flffbas 23889 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (ℤ𝑍) ∈ (fBas‘𝑍) ∧ 𝐹:𝑍𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
3431, 33syl3an2 1164 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
3525, 30, 343bitr4d 311 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  𝒫 cpw 4566   class class class wbr 5110  dom cdm 5641  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cz 12536  cuz 12800  fBascfbas 21259  filGencfg 21260  TopOnctopon 22804  𝑡clm 23120   fLimf cflf 23829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-i2m1 11143  ax-1ne0 11144  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-nn 12194  df-z 12537  df-uz 12801  df-rest 17392  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-ntr 22914  df-nei 22992  df-lm 23123  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834
This theorem is referenced by:  cmetcaulem  25195
  Copyright terms: Public domain W3C validator