Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem7 Structured version   Visualization version   GIF version

Theorem ballotlem7 34500
Description: 𝑅 is a bijection between two subsets of (𝑂𝐸): one where a vote for A is picked first, and one where a vote for B is picked first. (Contributed by Thierry Arnoux, 12-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlem7 (𝑅 ↾ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}):{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}–1-1-onto→{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝑖,𝐸,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑐,𝐹   𝑥,𝑀   𝑥,𝑁,𝑘,𝑖
Allowed substitution hints:   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐼(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem7
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotth.r . . 3 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
21funmpt2 6617 . 2 Fun 𝑅
3 ballotth.m . . 3 𝑀 ∈ ℕ
4 ballotth.n . . 3 𝑁 ∈ ℕ
5 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
6 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
7 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
8 ballotth.e . . 3 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
9 ballotth.mgtn . . 3 𝑁 < 𝑀
10 ballotth.i . . 3 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
11 ballotth.s . . 3 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
123, 4, 5, 6, 7, 8, 9, 10, 11, 1ballotlemrinv 34498 . 2 𝑅 = 𝑅
13 rabid 3465 . . . . . 6 (𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ↔ (𝑐 ∈ (𝑂𝐸) ∧ 1 ∈ 𝑐))
143, 4, 5, 6, 7, 8, 9, 10, 11, 1ballotlemrc 34495 . . . . . . . 8 (𝑐 ∈ (𝑂𝐸) → (𝑅𝑐) ∈ (𝑂𝐸))
1514adantr 480 . . . . . . 7 ((𝑐 ∈ (𝑂𝐸) ∧ 1 ∈ 𝑐) → (𝑅𝑐) ∈ (𝑂𝐸))
163, 4, 5, 6, 7, 8, 9, 10ballotlem1c 34472 . . . . . . . . . 10 ((𝑐 ∈ (𝑂𝐸) ∧ 1 ∈ 𝑐) → ¬ (𝐼𝑐) ∈ 𝑐)
1716ex 412 . . . . . . . . 9 (𝑐 ∈ (𝑂𝐸) → (1 ∈ 𝑐 → ¬ (𝐼𝑐) ∈ 𝑐))
183, 4, 5, 6, 7, 8, 9, 10, 11, 1ballotlem1ri 34499 . . . . . . . . . 10 (𝑐 ∈ (𝑂𝐸) → (1 ∈ (𝑅𝑐) ↔ (𝐼𝑐) ∈ 𝑐))
1918notbid 318 . . . . . . . . 9 (𝑐 ∈ (𝑂𝐸) → (¬ 1 ∈ (𝑅𝑐) ↔ ¬ (𝐼𝑐) ∈ 𝑐))
2017, 19sylibrd 259 . . . . . . . 8 (𝑐 ∈ (𝑂𝐸) → (1 ∈ 𝑐 → ¬ 1 ∈ (𝑅𝑐)))
2120imp 406 . . . . . . 7 ((𝑐 ∈ (𝑂𝐸) ∧ 1 ∈ 𝑐) → ¬ 1 ∈ (𝑅𝑐))
2215, 21jca 511 . . . . . 6 ((𝑐 ∈ (𝑂𝐸) ∧ 1 ∈ 𝑐) → ((𝑅𝑐) ∈ (𝑂𝐸) ∧ ¬ 1 ∈ (𝑅𝑐)))
2313, 22sylbi 217 . . . . 5 (𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} → ((𝑅𝑐) ∈ (𝑂𝐸) ∧ ¬ 1 ∈ (𝑅𝑐)))
2423rgen 3069 . . . 4 𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ((𝑅𝑐) ∈ (𝑂𝐸) ∧ ¬ 1 ∈ (𝑅𝑐))
25 eleq2 2833 . . . . . . . 8 (𝑏 = (𝑅𝑐) → (1 ∈ 𝑏 ↔ 1 ∈ (𝑅𝑐)))
2625notbid 318 . . . . . . 7 (𝑏 = (𝑅𝑐) → (¬ 1 ∈ 𝑏 ↔ ¬ 1 ∈ (𝑅𝑐)))
2726elrab 3708 . . . . . 6 ((𝑅𝑐) ∈ {𝑏 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑏} ↔ ((𝑅𝑐) ∈ (𝑂𝐸) ∧ ¬ 1 ∈ (𝑅𝑐)))
28 eleq2 2833 . . . . . . . . 9 (𝑏 = 𝑐 → (1 ∈ 𝑏 ↔ 1 ∈ 𝑐))
2928notbid 318 . . . . . . . 8 (𝑏 = 𝑐 → (¬ 1 ∈ 𝑏 ↔ ¬ 1 ∈ 𝑐))
3029cbvrabv 3454 . . . . . . 7 {𝑏 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑏} = {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
3130eleq2i 2836 . . . . . 6 ((𝑅𝑐) ∈ {𝑏 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑏} ↔ (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
3227, 31bitr3i 277 . . . . 5 (((𝑅𝑐) ∈ (𝑂𝐸) ∧ ¬ 1 ∈ (𝑅𝑐)) ↔ (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
3332ralbii 3099 . . . 4 (∀𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ((𝑅𝑐) ∈ (𝑂𝐸) ∧ ¬ 1 ∈ (𝑅𝑐)) ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
3424, 33mpbi 230 . . 3 𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
35 ssrab2 4103 . . . . 5 {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ (𝑂𝐸)
36 fvex 6933 . . . . . . 7 (𝑆𝑐) ∈ V
37 imaexg 7953 . . . . . . 7 ((𝑆𝑐) ∈ V → ((𝑆𝑐) “ 𝑐) ∈ V)
3836, 37ax-mp 5 . . . . . 6 ((𝑆𝑐) “ 𝑐) ∈ V
3938, 1dmmpti 6724 . . . . 5 dom 𝑅 = (𝑂𝐸)
4035, 39sseqtrri 4046 . . . 4 {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ dom 𝑅
41 nfrab1 3464 . . . . 5 𝑐{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}
42 nfrab1 3464 . . . . 5 𝑐{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
43 nfmpt1 5274 . . . . . 6 𝑐(𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
441, 43nfcxfr 2906 . . . . 5 𝑐𝑅
4541, 42, 44funimass4f 32656 . . . 4 ((Fun 𝑅 ∧ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ dom 𝑅) → ((𝑅 “ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
462, 40, 45mp2an 691 . . 3 ((𝑅 “ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
4734, 46mpbir 231 . 2 (𝑅 “ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
48 rabid 3465 . . . . . 6 (𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ (𝑐 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝑐))
4914adantr 480 . . . . . . 7 ((𝑐 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝑐) → (𝑅𝑐) ∈ (𝑂𝐸))
503, 4, 5, 6, 7, 8, 9, 10ballotlemic 34471 . . . . . . . . . 10 ((𝑐 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝑐) → (𝐼𝑐) ∈ 𝑐)
5150ex 412 . . . . . . . . 9 (𝑐 ∈ (𝑂𝐸) → (¬ 1 ∈ 𝑐 → (𝐼𝑐) ∈ 𝑐))
5251, 18sylibrd 259 . . . . . . . 8 (𝑐 ∈ (𝑂𝐸) → (¬ 1 ∈ 𝑐 → 1 ∈ (𝑅𝑐)))
5352imp 406 . . . . . . 7 ((𝑐 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝑐) → 1 ∈ (𝑅𝑐))
5449, 53jca 511 . . . . . 6 ((𝑐 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝑐) → ((𝑅𝑐) ∈ (𝑂𝐸) ∧ 1 ∈ (𝑅𝑐)))
5548, 54sylbi 217 . . . . 5 (𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} → ((𝑅𝑐) ∈ (𝑂𝐸) ∧ 1 ∈ (𝑅𝑐)))
5655rgen 3069 . . . 4 𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ((𝑅𝑐) ∈ (𝑂𝐸) ∧ 1 ∈ (𝑅𝑐))
5725elrab 3708 . . . . . 6 ((𝑅𝑐) ∈ {𝑏 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑏} ↔ ((𝑅𝑐) ∈ (𝑂𝐸) ∧ 1 ∈ (𝑅𝑐)))
5828cbvrabv 3454 . . . . . . 7 {𝑏 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑏} = {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}
5958eleq2i 2836 . . . . . 6 ((𝑅𝑐) ∈ {𝑏 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑏} ↔ (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐})
6057, 59bitr3i 277 . . . . 5 (((𝑅𝑐) ∈ (𝑂𝐸) ∧ 1 ∈ (𝑅𝑐)) ↔ (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐})
6160ralbii 3099 . . . 4 (∀𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ((𝑅𝑐) ∈ (𝑂𝐸) ∧ 1 ∈ (𝑅𝑐)) ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐})
6256, 61mpbi 230 . . 3 𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}
63 ssrab2 4103 . . . . 5 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ (𝑂𝐸)
6463, 39sseqtrri 4046 . . . 4 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ dom 𝑅
6542, 41, 44funimass4f 32656 . . . 4 ((Fun 𝑅 ∧ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ dom 𝑅) → ((𝑅 “ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}))
662, 64, 65mp2an 691 . . 3 ((𝑅 “ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} (𝑅𝑐) ∈ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐})
6762, 66mpbir 231 . 2 (𝑅 “ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}
682, 12, 47, 67, 40, 64rinvf1o 32649 1 (𝑅 ↾ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}):{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}–1-1-onto→{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  cin 3975  wss 3976  ifcif 4548  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  dom cdm 5700  cres 5702  cima 5703  Fun wfun 6567  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  cz 12639  ...cfz 13567  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-hash 14380
This theorem is referenced by:  ballotlem8  34501
  Copyright terms: Public domain W3C validator