Step | Hyp | Ref
| Expression |
1 | | ballotth.r |
. . 3
⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
2 | 1 | funmpt2 6457 |
. 2
⊢ Fun 𝑅 |
3 | | ballotth.m |
. . 3
⊢ 𝑀 ∈ ℕ |
4 | | ballotth.n |
. . 3
⊢ 𝑁 ∈ ℕ |
5 | | ballotth.o |
. . 3
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
6 | | ballotth.p |
. . 3
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
7 | | ballotth.f |
. . 3
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
8 | | ballotth.e |
. . 3
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
9 | | ballotth.mgtn |
. . 3
⊢ 𝑁 < 𝑀 |
10 | | ballotth.i |
. . 3
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
11 | | ballotth.s |
. . 3
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 1 | ballotlemrinv 32400 |
. 2
⊢ ◡𝑅 = 𝑅 |
13 | | rabid 3304 |
. . . . . 6
⊢ (𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ↔ (𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝑐)) |
14 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 1 | ballotlemrc 32397 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸)) |
15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝑐) → (𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸)) |
16 | 3, 4, 5, 6, 7, 8, 9, 10 | ballotlem1c 32374 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝑐) → ¬ (𝐼‘𝑐) ∈ 𝑐) |
17 | 16 | ex 412 |
. . . . . . . . 9
⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) → (1 ∈ 𝑐 → ¬ (𝐼‘𝑐) ∈ 𝑐)) |
18 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 1 | ballotlem1ri 32401 |
. . . . . . . . . 10
⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) → (1 ∈ (𝑅‘𝑐) ↔ (𝐼‘𝑐) ∈ 𝑐)) |
19 | 18 | notbid 317 |
. . . . . . . . 9
⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) → (¬ 1 ∈ (𝑅‘𝑐) ↔ ¬ (𝐼‘𝑐) ∈ 𝑐)) |
20 | 17, 19 | sylibrd 258 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) → (1 ∈ 𝑐 → ¬ 1 ∈ (𝑅‘𝑐))) |
21 | 20 | imp 406 |
. . . . . . 7
⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝑐) → ¬ 1 ∈ (𝑅‘𝑐)) |
22 | 15, 21 | jca 511 |
. . . . . 6
⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ 𝑐) → ((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ (𝑅‘𝑐))) |
23 | 13, 22 | sylbi 216 |
. . . . 5
⊢ (𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} → ((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ (𝑅‘𝑐))) |
24 | 23 | rgen 3073 |
. . . 4
⊢
∀𝑐 ∈
{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ (𝑅‘𝑐)) |
25 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑏 = (𝑅‘𝑐) → (1 ∈ 𝑏 ↔ 1 ∈ (𝑅‘𝑐))) |
26 | 25 | notbid 317 |
. . . . . . 7
⊢ (𝑏 = (𝑅‘𝑐) → (¬ 1 ∈ 𝑏 ↔ ¬ 1 ∈ (𝑅‘𝑐))) |
27 | 26 | elrab 3617 |
. . . . . 6
⊢ ((𝑅‘𝑐) ∈ {𝑏 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑏} ↔ ((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ (𝑅‘𝑐))) |
28 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑏 = 𝑐 → (1 ∈ 𝑏 ↔ 1 ∈ 𝑐)) |
29 | 28 | notbid 317 |
. . . . . . . 8
⊢ (𝑏 = 𝑐 → (¬ 1 ∈ 𝑏 ↔ ¬ 1 ∈ 𝑐)) |
30 | 29 | cbvrabv 3416 |
. . . . . . 7
⊢ {𝑏 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑏} = {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} |
31 | 30 | eleq2i 2830 |
. . . . . 6
⊢ ((𝑅‘𝑐) ∈ {𝑏 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑏} ↔ (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
32 | 27, 31 | bitr3i 276 |
. . . . 5
⊢ (((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ (𝑅‘𝑐)) ↔ (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
33 | 32 | ralbii 3090 |
. . . 4
⊢
(∀𝑐 ∈
{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ (𝑅‘𝑐)) ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
34 | 24, 33 | mpbi 229 |
. . 3
⊢
∀𝑐 ∈
{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} |
35 | | ssrab2 4009 |
. . . . 5
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ⊆ (𝑂 ∖ 𝐸) |
36 | | fvex 6769 |
. . . . . . 7
⊢ (𝑆‘𝑐) ∈ V |
37 | | imaexg 7736 |
. . . . . . 7
⊢ ((𝑆‘𝑐) ∈ V → ((𝑆‘𝑐) “ 𝑐) ∈ V) |
38 | 36, 37 | ax-mp 5 |
. . . . . 6
⊢ ((𝑆‘𝑐) “ 𝑐) ∈ V |
39 | 38, 1 | dmmpti 6561 |
. . . . 5
⊢ dom 𝑅 = (𝑂 ∖ 𝐸) |
40 | 35, 39 | sseqtrri 3954 |
. . . 4
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ⊆ dom 𝑅 |
41 | | nfrab1 3310 |
. . . . 5
⊢
Ⅎ𝑐{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} |
42 | | nfrab1 3310 |
. . . . 5
⊢
Ⅎ𝑐{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} |
43 | | nfmpt1 5178 |
. . . . . 6
⊢
Ⅎ𝑐(𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
44 | 1, 43 | nfcxfr 2904 |
. . . . 5
⊢
Ⅎ𝑐𝑅 |
45 | 41, 42, 44 | funimass4f 30873 |
. . . 4
⊢ ((Fun
𝑅 ∧ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ⊆ dom 𝑅) → ((𝑅 “ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐})) |
46 | 2, 40, 45 | mp2an 688 |
. . 3
⊢ ((𝑅 “ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) |
47 | 34, 46 | mpbir 230 |
. 2
⊢ (𝑅 “ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} |
48 | | rabid 3304 |
. . . . . 6
⊢ (𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ (𝑐 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝑐)) |
49 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝑐) → (𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸)) |
50 | 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemic 32373 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝑐) → (𝐼‘𝑐) ∈ 𝑐) |
51 | 50 | ex 412 |
. . . . . . . . 9
⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) → (¬ 1 ∈ 𝑐 → (𝐼‘𝑐) ∈ 𝑐)) |
52 | 51, 18 | sylibrd 258 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) → (¬ 1 ∈ 𝑐 → 1 ∈ (𝑅‘𝑐))) |
53 | 52 | imp 406 |
. . . . . . 7
⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝑐) → 1 ∈ (𝑅‘𝑐)) |
54 | 49, 53 | jca 511 |
. . . . . 6
⊢ ((𝑐 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝑐) → ((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ (𝑅‘𝑐))) |
55 | 48, 54 | sylbi 216 |
. . . . 5
⊢ (𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} → ((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ (𝑅‘𝑐))) |
56 | 55 | rgen 3073 |
. . . 4
⊢
∀𝑐 ∈
{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ (𝑅‘𝑐)) |
57 | 25 | elrab 3617 |
. . . . . 6
⊢ ((𝑅‘𝑐) ∈ {𝑏 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑏} ↔ ((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ (𝑅‘𝑐))) |
58 | 28 | cbvrabv 3416 |
. . . . . . 7
⊢ {𝑏 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑏} = {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} |
59 | 58 | eleq2i 2830 |
. . . . . 6
⊢ ((𝑅‘𝑐) ∈ {𝑏 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑏} ↔ (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) |
60 | 57, 59 | bitr3i 276 |
. . . . 5
⊢ (((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ (𝑅‘𝑐)) ↔ (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) |
61 | 60 | ralbii 3090 |
. . . 4
⊢
(∀𝑐 ∈
{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ((𝑅‘𝑐) ∈ (𝑂 ∖ 𝐸) ∧ 1 ∈ (𝑅‘𝑐)) ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) |
62 | 56, 61 | mpbi 229 |
. . 3
⊢
∀𝑐 ∈
{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} |
63 | | ssrab2 4009 |
. . . . 5
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ (𝑂 ∖ 𝐸) |
64 | 63, 39 | sseqtrri 3954 |
. . . 4
⊢ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ dom 𝑅 |
65 | 42, 41, 44 | funimass4f 30873 |
. . . 4
⊢ ((Fun
𝑅 ∧ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ dom 𝑅) → ((𝑅 “ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐})) |
66 | 2, 64, 65 | mp2an 688 |
. . 3
⊢ ((𝑅 “ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} ↔ ∀𝑐 ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} (𝑅‘𝑐) ∈ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}) |
67 | 62, 66 | mpbir 230 |
. 2
⊢ (𝑅 “ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐}) ⊆ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐} |
68 | 2, 12, 47, 67, 40, 64 | rinvf1o 30866 |
1
⊢ (𝑅 ↾ {𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}):{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ 1 ∈ 𝑐}–1-1-onto→{𝑐 ∈ (𝑂 ∖ 𝐸) ∣ ¬ 1 ∈ 𝑐} |