![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngodm1dm2 | Structured version Visualization version GIF version |
Description: In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rnplrnml0.1 | β’ π» = (2nd βπ ) |
rnplrnml0.2 | β’ πΊ = (1st βπ ) |
Ref | Expression |
---|---|
rngodm1dm2 | β’ (π β RingOps β dom dom πΊ = dom dom π») |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnplrnml0.2 | . . . 4 β’ πΊ = (1st βπ ) | |
2 | 1 | rngogrpo 36766 | . . 3 β’ (π β RingOps β πΊ β GrpOp) |
3 | eqid 2732 | . . . 4 β’ ran πΊ = ran πΊ | |
4 | 3 | grpofo 29739 | . . 3 β’ (πΊ β GrpOp β πΊ:(ran πΊ Γ ran πΊ)βontoβran πΊ) |
5 | 2, 4 | syl 17 | . 2 β’ (π β RingOps β πΊ:(ran πΊ Γ ran πΊ)βontoβran πΊ) |
6 | rnplrnml0.1 | . . 3 β’ π» = (2nd βπ ) | |
7 | 1, 6, 3 | rngosm 36756 | . 2 β’ (π β RingOps β π»:(ran πΊ Γ ran πΊ)βΆran πΊ) |
8 | fof 6802 | . . . 4 β’ (πΊ:(ran πΊ Γ ran πΊ)βontoβran πΊ β πΊ:(ran πΊ Γ ran πΊ)βΆran πΊ) | |
9 | 8 | fdmd 6725 | . . 3 β’ (πΊ:(ran πΊ Γ ran πΊ)βontoβran πΊ β dom πΊ = (ran πΊ Γ ran πΊ)) |
10 | fdm 6723 | . . . 4 β’ (π»:(ran πΊ Γ ran πΊ)βΆran πΊ β dom π» = (ran πΊ Γ ran πΊ)) | |
11 | eqtr 2755 | . . . . . . 7 β’ ((dom πΊ = (ran πΊ Γ ran πΊ) β§ (ran πΊ Γ ran πΊ) = dom π») β dom πΊ = dom π») | |
12 | 11 | dmeqd 5903 | . . . . . 6 β’ ((dom πΊ = (ran πΊ Γ ran πΊ) β§ (ran πΊ Γ ran πΊ) = dom π») β dom dom πΊ = dom dom π») |
13 | 12 | expcom 414 | . . . . 5 β’ ((ran πΊ Γ ran πΊ) = dom π» β (dom πΊ = (ran πΊ Γ ran πΊ) β dom dom πΊ = dom dom π»)) |
14 | 13 | eqcoms 2740 | . . . 4 β’ (dom π» = (ran πΊ Γ ran πΊ) β (dom πΊ = (ran πΊ Γ ran πΊ) β dom dom πΊ = dom dom π»)) |
15 | 10, 14 | syl 17 | . . 3 β’ (π»:(ran πΊ Γ ran πΊ)βΆran πΊ β (dom πΊ = (ran πΊ Γ ran πΊ) β dom dom πΊ = dom dom π»)) |
16 | 9, 15 | syl5com 31 | . 2 β’ (πΊ:(ran πΊ Γ ran πΊ)βontoβran πΊ β (π»:(ran πΊ Γ ran πΊ)βΆran πΊ β dom dom πΊ = dom dom π»)) |
17 | 5, 7, 16 | sylc 65 | 1 β’ (π β RingOps β dom dom πΊ = dom dom π») |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Γ cxp 5673 dom cdm 5675 ran crn 5676 βΆwf 6536 βontoβwfo 6538 βcfv 6540 1st c1st 7969 2nd c2nd 7970 GrpOpcgr 29729 RingOpscrngo 36750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-ov 7408 df-1st 7971 df-2nd 7972 df-grpo 29733 df-ablo 29785 df-rngo 36751 |
This theorem is referenced by: rngorn1 36789 |
Copyright terms: Public domain | W3C validator |