![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngodm1dm2 | Structured version Visualization version GIF version |
Description: In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rnplrnml0.1 | β’ π» = (2nd βπ ) |
rnplrnml0.2 | β’ πΊ = (1st βπ ) |
Ref | Expression |
---|---|
rngodm1dm2 | β’ (π β RingOps β dom dom πΊ = dom dom π») |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnplrnml0.2 | . . . 4 β’ πΊ = (1st βπ ) | |
2 | 1 | rngogrpo 37291 | . . 3 β’ (π β RingOps β πΊ β GrpOp) |
3 | eqid 2726 | . . . 4 β’ ran πΊ = ran πΊ | |
4 | 3 | grpofo 30261 | . . 3 β’ (πΊ β GrpOp β πΊ:(ran πΊ Γ ran πΊ)βontoβran πΊ) |
5 | 2, 4 | syl 17 | . 2 β’ (π β RingOps β πΊ:(ran πΊ Γ ran πΊ)βontoβran πΊ) |
6 | rnplrnml0.1 | . . 3 β’ π» = (2nd βπ ) | |
7 | 1, 6, 3 | rngosm 37281 | . 2 β’ (π β RingOps β π»:(ran πΊ Γ ran πΊ)βΆran πΊ) |
8 | fof 6799 | . . . 4 β’ (πΊ:(ran πΊ Γ ran πΊ)βontoβran πΊ β πΊ:(ran πΊ Γ ran πΊ)βΆran πΊ) | |
9 | 8 | fdmd 6722 | . . 3 β’ (πΊ:(ran πΊ Γ ran πΊ)βontoβran πΊ β dom πΊ = (ran πΊ Γ ran πΊ)) |
10 | fdm 6720 | . . . 4 β’ (π»:(ran πΊ Γ ran πΊ)βΆran πΊ β dom π» = (ran πΊ Γ ran πΊ)) | |
11 | eqtr 2749 | . . . . . . 7 β’ ((dom πΊ = (ran πΊ Γ ran πΊ) β§ (ran πΊ Γ ran πΊ) = dom π») β dom πΊ = dom π») | |
12 | 11 | dmeqd 5899 | . . . . . 6 β’ ((dom πΊ = (ran πΊ Γ ran πΊ) β§ (ran πΊ Γ ran πΊ) = dom π») β dom dom πΊ = dom dom π») |
13 | 12 | expcom 413 | . . . . 5 β’ ((ran πΊ Γ ran πΊ) = dom π» β (dom πΊ = (ran πΊ Γ ran πΊ) β dom dom πΊ = dom dom π»)) |
14 | 13 | eqcoms 2734 | . . . 4 β’ (dom π» = (ran πΊ Γ ran πΊ) β (dom πΊ = (ran πΊ Γ ran πΊ) β dom dom πΊ = dom dom π»)) |
15 | 10, 14 | syl 17 | . . 3 β’ (π»:(ran πΊ Γ ran πΊ)βΆran πΊ β (dom πΊ = (ran πΊ Γ ran πΊ) β dom dom πΊ = dom dom π»)) |
16 | 9, 15 | syl5com 31 | . 2 β’ (πΊ:(ran πΊ Γ ran πΊ)βontoβran πΊ β (π»:(ran πΊ Γ ran πΊ)βΆran πΊ β dom dom πΊ = dom dom π»)) |
17 | 5, 7, 16 | sylc 65 | 1 β’ (π β RingOps β dom dom πΊ = dom dom π») |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 Γ cxp 5667 dom cdm 5669 ran crn 5670 βΆwf 6533 βontoβwfo 6535 βcfv 6537 1st c1st 7972 2nd c2nd 7973 GrpOpcgr 30251 RingOpscrngo 37275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fo 6543 df-fv 6545 df-ov 7408 df-1st 7974 df-2nd 7975 df-grpo 30255 df-ablo 30307 df-rngo 37276 |
This theorem is referenced by: rngorn1 37314 |
Copyright terms: Public domain | W3C validator |