| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngodm1dm2 | Structured version Visualization version GIF version | ||
| Description: In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rnplrnml0.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
| rnplrnml0.2 | ⊢ 𝐺 = (1st ‘𝑅) |
| Ref | Expression |
|---|---|
| rngodm1dm2 | ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnplrnml0.2 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37911 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | eqid 2730 | . . . 4 ⊢ ran 𝐺 = ran 𝐺 | |
| 4 | 3 | grpofo 30435 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
| 6 | rnplrnml0.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 7 | 1, 6, 3 | rngosm 37901 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) |
| 8 | fof 6775 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) | |
| 9 | 8 | fdmd 6701 | . . 3 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺)) |
| 10 | fdm 6700 | . . . 4 ⊢ (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom 𝐻 = (ran 𝐺 × ran 𝐺)) | |
| 11 | eqtr 2750 | . . . . . . 7 ⊢ ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom 𝐺 = dom 𝐻) | |
| 12 | 11 | dmeqd 5872 | . . . . . 6 ⊢ ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom dom 𝐺 = dom dom 𝐻) |
| 13 | 12 | expcom 413 | . . . . 5 ⊢ ((ran 𝐺 × ran 𝐺) = dom 𝐻 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
| 14 | 13 | eqcoms 2738 | . . . 4 ⊢ (dom 𝐻 = (ran 𝐺 × ran 𝐺) → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
| 15 | 10, 14 | syl 17 | . . 3 ⊢ (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
| 16 | 9, 15 | syl5com 31 | . 2 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom dom 𝐺 = dom dom 𝐻)) |
| 17 | 5, 7, 16 | sylc 65 | 1 ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5639 dom cdm 5641 ran crn 5642 ⟶wf 6510 –onto→wfo 6512 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 GrpOpcgr 30425 RingOpscrngo 37895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-ov 7393 df-1st 7971 df-2nd 7972 df-grpo 30429 df-ablo 30481 df-rngo 37896 |
| This theorem is referenced by: rngorn1 37934 |
| Copyright terms: Public domain | W3C validator |