![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngodm1dm2 | Structured version Visualization version GIF version |
Description: In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rnplrnml0.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
rnplrnml0.2 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngodm1dm2 | ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnplrnml0.2 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 37870 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | eqid 2740 | . . . 4 ⊢ ran 𝐺 = ran 𝐺 | |
4 | 3 | grpofo 30531 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
6 | rnplrnml0.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
7 | 1, 6, 3 | rngosm 37860 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) |
8 | fof 6834 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) | |
9 | 8 | fdmd 6757 | . . 3 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺)) |
10 | fdm 6756 | . . . 4 ⊢ (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom 𝐻 = (ran 𝐺 × ran 𝐺)) | |
11 | eqtr 2763 | . . . . . . 7 ⊢ ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom 𝐺 = dom 𝐻) | |
12 | 11 | dmeqd 5930 | . . . . . 6 ⊢ ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom dom 𝐺 = dom dom 𝐻) |
13 | 12 | expcom 413 | . . . . 5 ⊢ ((ran 𝐺 × ran 𝐺) = dom 𝐻 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
14 | 13 | eqcoms 2748 | . . . 4 ⊢ (dom 𝐻 = (ran 𝐺 × ran 𝐺) → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
15 | 10, 14 | syl 17 | . . 3 ⊢ (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
16 | 9, 15 | syl5com 31 | . 2 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom dom 𝐺 = dom dom 𝐻)) |
17 | 5, 7, 16 | sylc 65 | 1 ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 × cxp 5698 dom cdm 5700 ran crn 5701 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 GrpOpcgr 30521 RingOpscrngo 37854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 df-1st 8030 df-2nd 8031 df-grpo 30525 df-ablo 30577 df-rngo 37855 |
This theorem is referenced by: rngorn1 37893 |
Copyright terms: Public domain | W3C validator |