Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngodm1dm2 Structured version   Visualization version   GIF version

Theorem rngodm1dm2 35204
Description: In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnplrnml0.1 𝐻 = (2nd𝑅)
rnplrnml0.2 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngodm1dm2 (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻)

Proof of Theorem rngodm1dm2
StepHypRef Expression
1 rnplrnml0.2 . . . 4 𝐺 = (1st𝑅)
21rngogrpo 35182 . . 3 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 eqid 2821 . . . 4 ran 𝐺 = ran 𝐺
43grpofo 28270 . . 3 (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺)
52, 4syl 17 . 2 (𝑅 ∈ RingOps → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺)
6 rnplrnml0.1 . . 3 𝐻 = (2nd𝑅)
71, 6, 3rngosm 35172 . 2 (𝑅 ∈ RingOps → 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
8 fof 6584 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
98fdmd 6517 . . 3 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺))
10 fdm 6516 . . . 4 (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom 𝐻 = (ran 𝐺 × ran 𝐺))
11 eqtr 2841 . . . . . . 7 ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom 𝐺 = dom 𝐻)
1211dmeqd 5768 . . . . . 6 ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom dom 𝐺 = dom dom 𝐻)
1312expcom 416 . . . . 5 ((ran 𝐺 × ran 𝐺) = dom 𝐻 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻))
1413eqcoms 2829 . . . 4 (dom 𝐻 = (ran 𝐺 × ran 𝐺) → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻))
1510, 14syl 17 . . 3 (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻))
169, 15syl5com 31 . 2 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom dom 𝐺 = dom dom 𝐻))
175, 7, 16sylc 65 1 (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110   × cxp 5547  dom cdm 5549  ran crn 5550  wf 6345  ontowfo 6347  cfv 6349  1st c1st 7681  2nd c2nd 7682  GrpOpcgr 28260  RingOpscrngo 35166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fo 6355  df-fv 6357  df-ov 7153  df-1st 7683  df-2nd 7684  df-grpo 28264  df-ablo 28316  df-rngo 35167
This theorem is referenced by:  rngorn1  35205
  Copyright terms: Public domain W3C validator