| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngodm1dm2 | Structured version Visualization version GIF version | ||
| Description: In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rnplrnml0.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
| rnplrnml0.2 | ⊢ 𝐺 = (1st ‘𝑅) |
| Ref | Expression |
|---|---|
| rngodm1dm2 | ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnplrnml0.2 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1 | rngogrpo 37956 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | eqid 2731 | . . . 4 ⊢ ran 𝐺 = ran 𝐺 | |
| 4 | 3 | grpofo 30486 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
| 6 | rnplrnml0.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 7 | 1, 6, 3 | rngosm 37946 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) |
| 8 | fof 6741 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) | |
| 9 | 8 | fdmd 6667 | . . 3 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺)) |
| 10 | fdm 6666 | . . . 4 ⊢ (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom 𝐻 = (ran 𝐺 × ran 𝐺)) | |
| 11 | eqtr 2751 | . . . . . . 7 ⊢ ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom 𝐺 = dom 𝐻) | |
| 12 | 11 | dmeqd 5850 | . . . . . 6 ⊢ ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom dom 𝐺 = dom dom 𝐻) |
| 13 | 12 | expcom 413 | . . . . 5 ⊢ ((ran 𝐺 × ran 𝐺) = dom 𝐻 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
| 14 | 13 | eqcoms 2739 | . . . 4 ⊢ (dom 𝐻 = (ran 𝐺 × ran 𝐺) → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
| 15 | 10, 14 | syl 17 | . . 3 ⊢ (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
| 16 | 9, 15 | syl5com 31 | . 2 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom dom 𝐺 = dom dom 𝐻)) |
| 17 | 5, 7, 16 | sylc 65 | 1 ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 × cxp 5617 dom cdm 5619 ran crn 5620 ⟶wf 6483 –onto→wfo 6485 ‘cfv 6487 1st c1st 7925 2nd c2nd 7926 GrpOpcgr 30476 RingOpscrngo 37940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fo 6493 df-fv 6495 df-ov 7355 df-1st 7927 df-2nd 7928 df-grpo 30480 df-ablo 30532 df-rngo 37941 |
| This theorem is referenced by: rngorn1 37979 |
| Copyright terms: Public domain | W3C validator |