Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosub Structured version   Visualization version   GIF version

Theorem rngosub 34761
Description: Subtraction in a ring, in terms of addition and negation. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringnegcl.1 𝐺 = (1st𝑅)
ringnegcl.2 𝑋 = ran 𝐺
ringnegcl.3 𝑁 = (inv‘𝐺)
ringsub.4 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
rngosub ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))

Proof of Theorem rngosub
StepHypRef Expression
1 ringnegcl.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 34741 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ringnegcl.2 . . 3 𝑋 = ran 𝐺
4 ringnegcl.3 . . 3 𝑁 = (inv‘𝐺)
5 ringsub.4 . . 3 𝐷 = ( /𝑔𝐺)
63, 4, 5grpodivval 27999 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))
72, 6syl3an1 1156 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1080   = wceq 1525  wcel 2083  ran crn 5451  cfv 6232  (class class class)co 7023  1st c1st 7550  GrpOpcgr 27953  invcgn 27955   /𝑔 cgs 27956  RingOpscrngo 34725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-1st 7552  df-2nd 7553  df-gdiv 27960  df-ablo 28009  df-rngo 34726
This theorem is referenced by:  rngosubdi  34776  rngosubdir  34777  idlsubcl  34854
  Copyright terms: Public domain W3C validator