![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosub | Structured version Visualization version GIF version |
Description: Subtraction in a ring, in terms of addition and negation. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
ringnegcl.1 | β’ πΊ = (1st βπ ) |
ringnegcl.2 | β’ π = ran πΊ |
ringnegcl.3 | β’ π = (invβπΊ) |
ringsub.4 | β’ π· = ( /π βπΊ) |
Ref | Expression |
---|---|
rngosub | β’ ((π β RingOps β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (π΄πΊ(πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegcl.1 | . . 3 β’ πΊ = (1st βπ ) | |
2 | 1 | rngogrpo 36415 | . 2 β’ (π β RingOps β πΊ β GrpOp) |
3 | ringnegcl.2 | . . 3 β’ π = ran πΊ | |
4 | ringnegcl.3 | . . 3 β’ π = (invβπΊ) | |
5 | ringsub.4 | . . 3 β’ π· = ( /π βπΊ) | |
6 | 3, 4, 5 | grpodivval 29519 | . 2 β’ ((πΊ β GrpOp β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (π΄πΊ(πβπ΅))) |
7 | 2, 6 | syl3an1 1164 | 1 β’ ((π β RingOps β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (π΄πΊ(πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 ran crn 5635 βcfv 6497 (class class class)co 7358 1st c1st 7920 GrpOpcgr 29473 invcgn 29475 /π cgs 29476 RingOpscrngo 36399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-gdiv 29480 df-ablo 29529 df-rngo 36400 |
This theorem is referenced by: rngosubdi 36450 rngosubdir 36451 idlsubcl 36528 |
Copyright terms: Public domain | W3C validator |