![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosub | Structured version Visualization version GIF version |
Description: Subtraction in a ring, in terms of addition and negation. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
ringnegcl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ringnegcl.2 | ⊢ 𝑋 = ran 𝐺 |
ringnegcl.3 | ⊢ 𝑁 = (inv‘𝐺) |
ringsub.4 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
rngosub | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegcl.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 34741 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | ringnegcl.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | ringnegcl.3 | . . 3 ⊢ 𝑁 = (inv‘𝐺) | |
5 | ringsub.4 | . . 3 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
6 | 3, 4, 5 | grpodivval 27999 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
7 | 2, 6 | syl3an1 1156 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ran crn 5451 ‘cfv 6232 (class class class)co 7023 1st c1st 7550 GrpOpcgr 27953 invcgn 27955 /𝑔 cgs 27956 RingOpscrngo 34725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-ov 7026 df-oprab 7027 df-mpo 7028 df-1st 7552 df-2nd 7553 df-gdiv 27960 df-ablo 28009 df-rngo 34726 |
This theorem is referenced by: rngosubdi 34776 rngosubdir 34777 idlsubcl 34854 |
Copyright terms: Public domain | W3C validator |