Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosm Structured version   Visualization version   GIF version

Theorem rngosm 37946
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngosm (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem rngosm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringi.1 . . . 4 𝐺 = (1st𝑅)
2 ringi.2 . . . 4 𝐻 = (2nd𝑅)
3 ringi.3 . . . 4 𝑋 = ran 𝐺
41, 2, 3rngoi 37945 . . 3 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
54simpld 494 . 2 (𝑅 ∈ RingOps → (𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋))
65simprd 495 1 (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056   × cxp 5614  ran crn 5617  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  AbelOpcablo 30522  RingOpscrngo 37940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-1st 7921  df-2nd 7922  df-rngo 37941
This theorem is referenced by:  rngocl  37947  rngosn3  37970  rngodm1dm2  37978  rngorn1eq  37980  rngomndo  37981  divrngcl  38003  isdrngo2  38004
  Copyright terms: Public domain W3C validator