Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblsplitf Structured version   Visualization version   GIF version

Theorem iblsplitf 45627
Description: A version of iblsplit 45623 using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblsplitf.X 𝑥𝜑
iblsplitf.vol (𝜑 → (vol*‘(𝐴𝐵)) = 0)
iblsplitf.u (𝜑𝑈 = (𝐴𝐵))
iblsplitf.c ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
iblsplitf.a (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsplitf.b (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblsplitf (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem iblsplitf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2892 . . 3 𝑦𝐶
2 nfcsb1v 3916 . . 3 𝑥𝑦 / 𝑥𝐶
3 csbeq1a 3905 . . 3 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
41, 2, 3cbvmpt 5256 . 2 (𝑥𝑈𝐶) = (𝑦𝑈𝑦 / 𝑥𝐶)
5 iblsplitf.vol . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
6 iblsplitf.u . . 3 (𝜑𝑈 = (𝐴𝐵))
7 simpr 483 . . . 4 ((𝜑𝑦𝑈) → 𝑦𝑈)
8 iblsplitf.X . . . . . 6 𝑥𝜑
9 nfv 1910 . . . . . 6 𝑥 𝑦𝑈
108, 9nfan 1895 . . . . 5 𝑥(𝜑𝑦𝑈)
11 iblsplitf.c . . . . . . 7 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
1211adantlr 713 . . . . . 6 (((𝜑𝑦𝑈) ∧ 𝑥𝑈) → 𝐶 ∈ ℂ)
1312ex 411 . . . . 5 ((𝜑𝑦𝑈) → (𝑥𝑈𝐶 ∈ ℂ))
1410, 13ralrimi 3245 . . . 4 ((𝜑𝑦𝑈) → ∀𝑥𝑈 𝐶 ∈ ℂ)
15 rspcsbela 4432 . . . 4 ((𝑦𝑈 ∧ ∀𝑥𝑈 𝐶 ∈ ℂ) → 𝑦 / 𝑥𝐶 ∈ ℂ)
167, 14, 15syl2anc 582 . . 3 ((𝜑𝑦𝑈) → 𝑦 / 𝑥𝐶 ∈ ℂ)
173equcoms 2016 . . . . . 6 (𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶)
1817eqcomd 2732 . . . . 5 (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶)
192, 1, 18cbvmpt 5256 . . . 4 (𝑦𝐴𝑦 / 𝑥𝐶) = (𝑥𝐴𝐶)
20 iblsplitf.a . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
2119, 20eqeltrid 2830 . . 3 (𝜑 → (𝑦𝐴𝑦 / 𝑥𝐶) ∈ 𝐿1)
222, 1, 18cbvmpt 5256 . . . 4 (𝑦𝐵𝑦 / 𝑥𝐶) = (𝑥𝐵𝐶)
23 iblsplitf.b . . . 4 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
2422, 23eqeltrid 2830 . . 3 (𝜑 → (𝑦𝐵𝑦 / 𝑥𝐶) ∈ 𝐿1)
255, 6, 16, 21, 24iblsplit 45623 . 2 (𝜑 → (𝑦𝑈𝑦 / 𝑥𝐶) ∈ 𝐿1)
264, 25eqeltrid 2830 1 (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wnf 1778  wcel 2099  wral 3051  csb 3891  cun 3944  cin 3945  cmpt 5228  cfv 6546  cc 11147  0cc0 11149  vol*covol 25479  𝐿1cibl 25634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-addf 11228
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-disj 5111  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fi 9447  df-sup 9478  df-inf 9479  df-oi 9546  df-dju 9937  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-q 12979  df-rp 13023  df-xneg 13140  df-xadd 13141  df-xmul 13142  df-ioo 13376  df-ico 13378  df-icc 13379  df-fz 13533  df-fzo 13676  df-fl 13806  df-seq 14016  df-exp 14076  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-clim 15485  df-sum 15686  df-rest 17432  df-topgen 17453  df-psmet 21331  df-xmet 21332  df-met 21333  df-bl 21334  df-mopn 21335  df-top 22884  df-topon 22901  df-bases 22937  df-cmp 23379  df-ovol 25481  df-vol 25482  df-mbf 25636  df-itg1 25637  df-itg2 25638  df-ibl 25639
This theorem is referenced by:  iblspltprt  45630
  Copyright terms: Public domain W3C validator