Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iblsplitf | Structured version Visualization version GIF version |
Description: A version of iblsplit 43461 using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iblsplitf.X | ⊢ Ⅎ𝑥𝜑 |
iblsplitf.vol | ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
iblsplitf.u | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
iblsplitf.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
iblsplitf.a | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) |
iblsplitf.b | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
iblsplitf | ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑦𝐶 | |
2 | nfcsb1v 3861 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
3 | csbeq1a 3850 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
4 | 1, 2, 3 | cbvmpt 5189 | . 2 ⊢ (𝑥 ∈ 𝑈 ↦ 𝐶) = (𝑦 ∈ 𝑈 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
5 | iblsplitf.vol | . . 3 ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) | |
6 | iblsplitf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
8 | iblsplitf.X | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
9 | nfv 1920 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑈 | |
10 | 8, 9 | nfan 1905 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝑈) |
11 | iblsplitf.c | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
12 | 11 | adantlr 711 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
13 | 12 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → (𝑥 ∈ 𝑈 → 𝐶 ∈ ℂ)) |
14 | 10, 13 | ralrimi 3141 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 𝐶 ∈ ℂ) |
15 | rspcsbela 4374 | . . . 4 ⊢ ((𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 𝐶 ∈ ℂ) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) | |
16 | 7, 14, 15 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) |
17 | 3 | equcoms 2026 | . . . . . 6 ⊢ (𝑦 = 𝑥 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
18 | 17 | eqcomd 2745 | . . . . 5 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐶 = 𝐶) |
19 | 2, 1, 18 | cbvmpt 5189 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
20 | iblsplitf.a | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) | |
21 | 19, 20 | eqeltrid 2844 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
22 | 2, 1, 18 | cbvmpt 5189 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
23 | iblsplitf.b | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | |
24 | 22, 23 | eqeltrid 2844 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
25 | 5, 6, 16, 21, 24 | iblsplit 43461 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
26 | 4, 25 | eqeltrid 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1789 ∈ wcel 2109 ∀wral 3065 ⦋csb 3836 ∪ cun 3889 ∩ cin 3890 ↦ cmpt 5161 ‘cfv 6430 ℂcc 10853 0cc0 10855 vol*covol 24607 𝐿1cibl 24762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-disj 5044 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-ofr 7525 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fi 9131 df-sup 9162 df-inf 9163 df-oi 9230 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-ioo 13065 df-ico 13067 df-icc 13068 df-fz 13222 df-fzo 13365 df-fl 13493 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-sum 15379 df-rest 17114 df-topgen 17135 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-top 22024 df-topon 22041 df-bases 22077 df-cmp 22519 df-ovol 24609 df-vol 24610 df-mbf 24764 df-itg1 24765 df-itg2 24766 df-ibl 24767 |
This theorem is referenced by: iblspltprt 43468 |
Copyright terms: Public domain | W3C validator |