![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iblsplitf | Structured version Visualization version GIF version |
Description: A version of iblsplit 41792 using bound-variable hypotheses instead of distinct variable conditions" (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iblsplitf.X | ⊢ Ⅎ𝑥𝜑 |
iblsplitf.vol | ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
iblsplitf.u | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
iblsplitf.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
iblsplitf.a | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) |
iblsplitf.b | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
iblsplitf | ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2949 | . . 3 ⊢ Ⅎ𝑦𝐶 | |
2 | nfcsb1v 3833 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
3 | csbeq1a 3824 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
4 | 1, 2, 3 | cbvmpt 5060 | . 2 ⊢ (𝑥 ∈ 𝑈 ↦ 𝐶) = (𝑦 ∈ 𝑈 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
5 | iblsplitf.vol | . . 3 ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) | |
6 | iblsplitf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
7 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
8 | iblsplitf.X | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
9 | nfv 1892 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑈 | |
10 | 8, 9 | nfan 1881 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝑈) |
11 | iblsplitf.c | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
12 | 11 | adantlr 711 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
13 | 12 | ex 413 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → (𝑥 ∈ 𝑈 → 𝐶 ∈ ℂ)) |
14 | 10, 13 | ralrimi 3183 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 𝐶 ∈ ℂ) |
15 | rspcsbela 4302 | . . . 4 ⊢ ((𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 𝐶 ∈ ℂ) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) | |
16 | 7, 14, 15 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) |
17 | 3 | equcoms 2004 | . . . . . 6 ⊢ (𝑦 = 𝑥 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
18 | 17 | eqcomd 2801 | . . . . 5 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐶 = 𝐶) |
19 | 2, 1, 18 | cbvmpt 5060 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
20 | iblsplitf.a | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) | |
21 | 19, 20 | syl5eqel 2887 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
22 | 2, 1, 18 | cbvmpt 5060 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
23 | iblsplitf.b | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | |
24 | 22, 23 | syl5eqel 2887 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
25 | 5, 6, 16, 21, 24 | iblsplit 41792 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
26 | 4, 25 | syl5eqel 2887 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 Ⅎwnf 1765 ∈ wcel 2081 ∀wral 3105 ⦋csb 3811 ∪ cun 3857 ∩ cin 3858 ↦ cmpt 5041 ‘cfv 6225 ℂcc 10381 0cc0 10383 vol*covol 23746 𝐿1cibl 23901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 ax-addf 10462 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-disj 4931 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-of 7267 df-ofr 7268 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-2o 7954 df-oadd 7957 df-er 8139 df-map 8258 df-pm 8259 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fi 8721 df-sup 8752 df-inf 8753 df-oi 8820 df-dju 9176 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-n0 11746 df-z 11830 df-uz 12094 df-q 12198 df-rp 12240 df-xneg 12357 df-xadd 12358 df-xmul 12359 df-ioo 12592 df-ico 12594 df-icc 12595 df-fz 12743 df-fzo 12884 df-fl 13012 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-sum 14877 df-rest 16525 df-topgen 16546 df-psmet 20219 df-xmet 20220 df-met 20221 df-bl 20222 df-mopn 20223 df-top 21186 df-topon 21203 df-bases 21238 df-cmp 21679 df-ovol 23748 df-vol 23749 df-mbf 23903 df-itg1 23904 df-itg2 23905 df-ibl 23906 |
This theorem is referenced by: iblspltprt 41799 |
Copyright terms: Public domain | W3C validator |