Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblsplitf Structured version   Visualization version   GIF version

Theorem iblsplitf 44676
Description: A version of iblsplit 44672 using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblsplitf.X 𝑥𝜑
iblsplitf.vol (𝜑 → (vol*‘(𝐴𝐵)) = 0)
iblsplitf.u (𝜑𝑈 = (𝐴𝐵))
iblsplitf.c ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
iblsplitf.a (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsplitf.b (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblsplitf (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem iblsplitf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2903 . . 3 𝑦𝐶
2 nfcsb1v 3918 . . 3 𝑥𝑦 / 𝑥𝐶
3 csbeq1a 3907 . . 3 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
41, 2, 3cbvmpt 5259 . 2 (𝑥𝑈𝐶) = (𝑦𝑈𝑦 / 𝑥𝐶)
5 iblsplitf.vol . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
6 iblsplitf.u . . 3 (𝜑𝑈 = (𝐴𝐵))
7 simpr 485 . . . 4 ((𝜑𝑦𝑈) → 𝑦𝑈)
8 iblsplitf.X . . . . . 6 𝑥𝜑
9 nfv 1917 . . . . . 6 𝑥 𝑦𝑈
108, 9nfan 1902 . . . . 5 𝑥(𝜑𝑦𝑈)
11 iblsplitf.c . . . . . . 7 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
1211adantlr 713 . . . . . 6 (((𝜑𝑦𝑈) ∧ 𝑥𝑈) → 𝐶 ∈ ℂ)
1312ex 413 . . . . 5 ((𝜑𝑦𝑈) → (𝑥𝑈𝐶 ∈ ℂ))
1410, 13ralrimi 3254 . . . 4 ((𝜑𝑦𝑈) → ∀𝑥𝑈 𝐶 ∈ ℂ)
15 rspcsbela 4435 . . . 4 ((𝑦𝑈 ∧ ∀𝑥𝑈 𝐶 ∈ ℂ) → 𝑦 / 𝑥𝐶 ∈ ℂ)
167, 14, 15syl2anc 584 . . 3 ((𝜑𝑦𝑈) → 𝑦 / 𝑥𝐶 ∈ ℂ)
173equcoms 2023 . . . . . 6 (𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶)
1817eqcomd 2738 . . . . 5 (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶)
192, 1, 18cbvmpt 5259 . . . 4 (𝑦𝐴𝑦 / 𝑥𝐶) = (𝑥𝐴𝐶)
20 iblsplitf.a . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
2119, 20eqeltrid 2837 . . 3 (𝜑 → (𝑦𝐴𝑦 / 𝑥𝐶) ∈ 𝐿1)
222, 1, 18cbvmpt 5259 . . . 4 (𝑦𝐵𝑦 / 𝑥𝐶) = (𝑥𝐵𝐶)
23 iblsplitf.b . . . 4 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
2422, 23eqeltrid 2837 . . 3 (𝜑 → (𝑦𝐵𝑦 / 𝑥𝐶) ∈ 𝐿1)
255, 6, 16, 21, 24iblsplit 44672 . 2 (𝜑 → (𝑦𝑈𝑦 / 𝑥𝐶) ∈ 𝐿1)
264, 25eqeltrid 2837 1 (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wral 3061  csb 3893  cun 3946  cin 3947  cmpt 5231  cfv 6543  cc 11107  0cc0 11109  vol*covol 24978  𝐿1cibl 25133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-ofr 7670  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-ioo 13327  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-fl 13756  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-rest 17367  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-top 22395  df-topon 22412  df-bases 22448  df-cmp 22890  df-ovol 24980  df-vol 24981  df-mbf 25135  df-itg1 25136  df-itg2 25137  df-ibl 25138
This theorem is referenced by:  iblspltprt  44679
  Copyright terms: Public domain W3C validator