Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iblsplitf | Structured version Visualization version GIF version |
Description: A version of iblsplit 43556 using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iblsplitf.X | ⊢ Ⅎ𝑥𝜑 |
iblsplitf.vol | ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
iblsplitf.u | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
iblsplitf.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
iblsplitf.a | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) |
iblsplitf.b | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
iblsplitf | ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2905 | . . 3 ⊢ Ⅎ𝑦𝐶 | |
2 | nfcsb1v 3862 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
3 | csbeq1a 3851 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
4 | 1, 2, 3 | cbvmpt 5192 | . 2 ⊢ (𝑥 ∈ 𝑈 ↦ 𝐶) = (𝑦 ∈ 𝑈 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
5 | iblsplitf.vol | . . 3 ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) | |
6 | iblsplitf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
7 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
8 | iblsplitf.X | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
9 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑈 | |
10 | 8, 9 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝑈) |
11 | iblsplitf.c | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
12 | 11 | adantlr 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
13 | 12 | ex 414 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → (𝑥 ∈ 𝑈 → 𝐶 ∈ ℂ)) |
14 | 10, 13 | ralrimi 3237 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 𝐶 ∈ ℂ) |
15 | rspcsbela 4375 | . . . 4 ⊢ ((𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 𝐶 ∈ ℂ) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) | |
16 | 7, 14, 15 | syl2anc 585 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) |
17 | 3 | equcoms 2021 | . . . . . 6 ⊢ (𝑦 = 𝑥 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
18 | 17 | eqcomd 2742 | . . . . 5 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐶 = 𝐶) |
19 | 2, 1, 18 | cbvmpt 5192 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
20 | iblsplitf.a | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) | |
21 | 19, 20 | eqeltrid 2841 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
22 | 2, 1, 18 | cbvmpt 5192 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
23 | iblsplitf.b | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | |
24 | 22, 23 | eqeltrid 2841 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
25 | 5, 6, 16, 21, 24 | iblsplit 43556 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
26 | 4, 25 | eqeltrid 2841 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 ∀wral 3062 ⦋csb 3837 ∪ cun 3890 ∩ cin 3891 ↦ cmpt 5164 ‘cfv 6458 ℂcc 10915 0cc0 10917 vol*covol 24671 𝐿1cibl 24826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-disj 5047 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-ofr 7566 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-sum 15443 df-rest 17178 df-topgen 17199 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-top 22088 df-topon 22105 df-bases 22141 df-cmp 22583 df-ovol 24673 df-vol 24674 df-mbf 24828 df-itg1 24829 df-itg2 24830 df-ibl 24831 |
This theorem is referenced by: iblspltprt 43563 |
Copyright terms: Public domain | W3C validator |