![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iblsplitf | Structured version Visualization version GIF version |
Description: A version of iblsplit 45922 using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iblsplitf.X | ⊢ Ⅎ𝑥𝜑 |
iblsplitf.vol | ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
iblsplitf.u | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
iblsplitf.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
iblsplitf.a | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) |
iblsplitf.b | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
iblsplitf | ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑦𝐶 | |
2 | nfcsb1v 3933 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
3 | csbeq1a 3922 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
4 | 1, 2, 3 | cbvmpt 5259 | . 2 ⊢ (𝑥 ∈ 𝑈 ↦ 𝐶) = (𝑦 ∈ 𝑈 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
5 | iblsplitf.vol | . . 3 ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) | |
6 | iblsplitf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) | |
8 | iblsplitf.X | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
9 | nfv 1912 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑈 | |
10 | 8, 9 | nfan 1897 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝑈) |
11 | iblsplitf.c | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
12 | 11 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
13 | 12 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → (𝑥 ∈ 𝑈 → 𝐶 ∈ ℂ)) |
14 | 10, 13 | ralrimi 3255 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 𝐶 ∈ ℂ) |
15 | rspcsbela 4444 | . . . 4 ⊢ ((𝑦 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝑈 𝐶 ∈ ℂ) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) | |
16 | 7, 14, 15 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑈) → ⦋𝑦 / 𝑥⦌𝐶 ∈ ℂ) |
17 | 3 | equcoms 2017 | . . . . . 6 ⊢ (𝑦 = 𝑥 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
18 | 17 | eqcomd 2741 | . . . . 5 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐶 = 𝐶) |
19 | 2, 1, 18 | cbvmpt 5259 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
20 | iblsplitf.a | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) | |
21 | 19, 20 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
22 | 2, 1, 18 | cbvmpt 5259 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
23 | iblsplitf.b | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) | |
24 | 22, 23 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
25 | 5, 6, 16, 21, 24 | iblsplit 45922 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑈 ↦ ⦋𝑦 / 𝑥⦌𝐶) ∈ 𝐿1) |
26 | 4, 25 | eqeltrid 2843 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 ∀wral 3059 ⦋csb 3908 ∪ cun 3961 ∩ cin 3962 ↦ cmpt 5231 ‘cfv 6563 ℂcc 11151 0cc0 11153 vol*covol 25511 𝐿1cibl 25666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-rest 17469 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-bases 22969 df-cmp 23411 df-ovol 25513 df-vol 25514 df-mbf 25668 df-itg1 25669 df-itg2 25670 df-ibl 25671 |
This theorem is referenced by: iblspltprt 45929 |
Copyright terms: Public domain | W3C validator |