Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummptnn0fz | Structured version Visualization version GIF version |
Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
gsummptnn0fz.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptnn0fz.0 | ⊢ 0 = (0g‘𝐺) |
gsummptnn0fz.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptnn0fz.f | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
gsummptnn0fz.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
gsummptnn0fz.u | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) |
Ref | Expression |
---|---|
gsummptnn0fz | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptnn0fz.u | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) | |
2 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥(𝑆 < 𝑘 → 𝐶 = 0 ) | |
3 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑘 𝑆 < 𝑥 | |
4 | nfcsb1v 3853 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐶 | |
5 | 4 | nfeq1 2921 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐶 = 0 |
6 | 3, 5 | nfim 1900 | . . . . 5 ⊢ Ⅎ𝑘(𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) |
7 | breq2 5074 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝑆 < 𝑘 ↔ 𝑆 < 𝑥)) | |
8 | csbeq1a 3842 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → 𝐶 = ⦋𝑥 / 𝑘⦌𝐶) | |
9 | 8 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝐶 = 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
10 | 7, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑥 → ((𝑆 < 𝑘 → 𝐶 = 0 ) ↔ (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
11 | 2, 6, 10 | cbvralw 3363 | . . . 4 ⊢ (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
12 | 1, 11 | sylib 217 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
13 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
14 | gsummptnn0fz.f | . . . . . . . . . . . 12 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) | |
15 | 14 | anim1ci 615 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵)) |
16 | rspcsbela 4366 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) | |
17 | 15, 16 | syl 17 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) |
18 | 13, 17 | jca 511 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵)) |
19 | 18 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → (𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵)) |
20 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) = (𝑘 ∈ ℕ0 ↦ 𝐶) | |
21 | 20 | fvmpts 6860 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
22 | 19, 21 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
23 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) | |
24 | 22, 23 | eqtrd 2778 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) |
25 | 24 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (⦋𝑥 / 𝑘⦌𝐶 = 0 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 )) |
26 | 25 | imim2d 57 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ))) |
27 | 26 | ralimdva 3102 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ))) |
28 | 12, 27 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 )) |
29 | gsummptnn0fz.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
30 | gsummptnn0fz.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
31 | gsummptnn0fz.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
32 | 20 | fmpt 6966 | . . . . 5 ⊢ (∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ↔ (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵) |
33 | 14, 32 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵) |
34 | 29 | fvexi 6770 | . . . . . 6 ⊢ 𝐵 ∈ V |
35 | nn0ex 12169 | . . . . . 6 ⊢ ℕ0 ∈ V | |
36 | 34, 35 | pm3.2i 470 | . . . . 5 ⊢ (𝐵 ∈ V ∧ ℕ0 ∈ V) |
37 | elmapg 8586 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ ℕ0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) ∈ (𝐵 ↑m ℕ0) ↔ (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵)) | |
38 | 36, 37 | mp1i 13 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) ∈ (𝐵 ↑m ℕ0) ↔ (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵)) |
39 | 33, 38 | mpbird 256 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ (𝐵 ↑m ℕ0)) |
40 | gsummptnn0fz.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
41 | fz0ssnn0 13280 | . . . . 5 ⊢ (0...𝑆) ⊆ ℕ0 | |
42 | resmpt 5934 | . . . . 5 ⊢ ((0...𝑆) ⊆ ℕ0 → ((𝑘 ∈ ℕ0 ↦ 𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶)) | |
43 | 41, 42 | ax-mp 5 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ↦ 𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶) |
44 | 43 | eqcomi 2747 | . . 3 ⊢ (𝑘 ∈ (0...𝑆) ↦ 𝐶) = ((𝑘 ∈ ℕ0 ↦ 𝐶) ↾ (0...𝑆)) |
45 | 29, 30, 31, 39, 40, 44 | fsfnn0gsumfsffz 19499 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))) |
46 | 28, 45 | mpd 15 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⦋csb 3828 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 < clt 10940 ℕ0cn0 12163 ...cfz 13168 Basecbs 16840 0gc0g 17067 Σg cgsu 17068 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cntz 18838 df-cmn 19303 |
This theorem is referenced by: gsummptnn0fzfv 19503 telgsums 19509 gsummoncoe1 21385 pmatcollpwfi 21839 mp2pm2mplem4 21866 |
Copyright terms: Public domain | W3C validator |