MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptnn0fz Structured version   Visualization version   GIF version

Theorem gsummptnn0fz 19925
Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
gsummptnn0fz.b 𝐵 = (Base‘𝐺)
gsummptnn0fz.0 0 = (0g𝐺)
gsummptnn0fz.g (𝜑𝐺 ∈ CMnd)
gsummptnn0fz.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
gsummptnn0fz.s (𝜑𝑆 ∈ ℕ0)
gsummptnn0fz.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
Assertion
Ref Expression
gsummptnn0fz (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))
Distinct variable groups:   𝐵,𝑘   𝑆,𝑘   0 ,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)

Proof of Theorem gsummptnn0fz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gsummptnn0fz.u . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
2 nfv 1910 . . . . 5 𝑥(𝑆 < 𝑘𝐶 = 0 )
3 nfv 1910 . . . . . 6 𝑘 𝑆 < 𝑥
4 nfcsb1v 3914 . . . . . . 7 𝑘𝑥 / 𝑘𝐶
54nfeq1 2913 . . . . . 6 𝑘𝑥 / 𝑘𝐶 = 0
63, 5nfim 1892 . . . . 5 𝑘(𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 )
7 breq2 5146 . . . . . 6 (𝑘 = 𝑥 → (𝑆 < 𝑘𝑆 < 𝑥))
8 csbeq1a 3903 . . . . . . 7 (𝑘 = 𝑥𝐶 = 𝑥 / 𝑘𝐶)
98eqeq1d 2729 . . . . . 6 (𝑘 = 𝑥 → (𝐶 = 0𝑥 / 𝑘𝐶 = 0 ))
107, 9imbi12d 344 . . . . 5 (𝑘 = 𝑥 → ((𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
112, 6, 10cbvralw 3298 . . . 4 (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
121, 11sylib 217 . . 3 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
13 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
14 gsummptnn0fz.f . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1514anim1ci 615 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵))
16 rspcsbela 4431 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
1715, 16syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
1813, 17jca 511 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵))
1918adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → (𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵))
20 eqid 2727 . . . . . . . . 9 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
2120fvmpts 7002 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2219, 21syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
23 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → 𝑥 / 𝑘𝐶 = 0 )
2422, 23eqtrd 2767 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )
2524ex 412 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑥 / 𝑘𝐶 = 0 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ))
2625imim2d 57 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ) → (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )))
2726ralimdva 3162 . . 3 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )))
2812, 27mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ))
29 gsummptnn0fz.b . . 3 𝐵 = (Base‘𝐺)
30 gsummptnn0fz.0 . . 3 0 = (0g𝐺)
31 gsummptnn0fz.g . . 3 (𝜑𝐺 ∈ CMnd)
3220fmpt 7114 . . . . 5 (∀𝑘 ∈ ℕ0 𝐶𝐵 ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵)
3314, 32sylib 217 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐶):ℕ0𝐵)
3429fvexi 6905 . . . . . 6 𝐵 ∈ V
35 nn0ex 12494 . . . . . 6 0 ∈ V
3634, 35pm3.2i 470 . . . . 5 (𝐵 ∈ V ∧ ℕ0 ∈ V)
37 elmapg 8847 . . . . 5 ((𝐵 ∈ V ∧ ℕ0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) ∈ (𝐵m0) ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵))
3836, 37mp1i 13 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0𝐶) ∈ (𝐵m0) ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵))
3933, 38mpbird 257 . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐶) ∈ (𝐵m0))
40 gsummptnn0fz.s . . 3 (𝜑𝑆 ∈ ℕ0)
41 fz0ssnn0 13614 . . . . 5 (0...𝑆) ⊆ ℕ0
42 resmpt 6035 . . . . 5 ((0...𝑆) ⊆ ℕ0 → ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶))
4341, 42ax-mp 5 . . . 4 ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶)
4443eqcomi 2736 . . 3 (𝑘 ∈ (0...𝑆) ↦ 𝐶) = ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆))
4529, 30, 31, 39, 40, 44fsfnn0gsumfsffz 19922 . 2 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ) → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))))
4628, 45mpd 15 1 (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  Vcvv 3469  csb 3889  wss 3944   class class class wbr 5142  cmpt 5225  cres 5674  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8834  0cc0 11124   < clt 11264  0cn0 12488  ...cfz 13502  Basecbs 17165  0gc0g 17406   Σg cgsu 17407  CMndccmn 19719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-oi 9519  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-n0 12489  df-z 12575  df-uz 12839  df-fz 13503  df-fzo 13646  df-seq 13985  df-hash 14308  df-0g 17408  df-gsum 17409  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-cntz 19252  df-cmn 19721
This theorem is referenced by:  gsummptnn0fzfv  19926  telgsums  19932  gsummoncoe1  22201  pmatcollpwfi  22658  mp2pm2mplem4  22685
  Copyright terms: Public domain W3C validator