| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptnn0fz | Structured version Visualization version GIF version | ||
| Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 3-Jul-2022.) |
| Ref | Expression |
|---|---|
| gsummptnn0fz.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptnn0fz.0 | ⊢ 0 = (0g‘𝐺) |
| gsummptnn0fz.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptnn0fz.f | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
| gsummptnn0fz.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| gsummptnn0fz.u | ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) |
| Ref | Expression |
|---|---|
| gsummptnn0fz | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptnn0fz.u | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) | |
| 2 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥(𝑆 < 𝑘 → 𝐶 = 0 ) | |
| 3 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑘 𝑆 < 𝑥 | |
| 4 | nfcsb1v 3898 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐶 | |
| 5 | 4 | nfeq1 2914 | . . . . . 6 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐶 = 0 |
| 6 | 3, 5 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑘(𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) |
| 7 | breq2 5123 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝑆 < 𝑘 ↔ 𝑆 < 𝑥)) | |
| 8 | csbeq1a 3888 | . . . . . . 7 ⊢ (𝑘 = 𝑥 → 𝐶 = ⦋𝑥 / 𝑘⦌𝐶) | |
| 9 | 8 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝐶 = 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
| 10 | 7, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑥 → ((𝑆 < 𝑘 → 𝐶 = 0 ) ↔ (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
| 11 | 2, 6, 10 | cbvralw 3286 | . . . 4 ⊢ (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
| 12 | 1, 11 | sylib 218 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
| 13 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
| 14 | gsummptnn0fz.f | . . . . . . . . . . . 12 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) | |
| 15 | 14 | anim1ci 616 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵)) |
| 16 | rspcsbela 4413 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) | |
| 17 | 15, 16 | syl 17 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) |
| 18 | 13, 17 | jca 511 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵)) |
| 19 | 18 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → (𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵)) |
| 20 | eqid 2735 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) = (𝑘 ∈ ℕ0 ↦ 𝐶) | |
| 21 | 20 | fvmpts 6989 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
| 22 | 19, 21 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
| 23 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) | |
| 24 | 22, 23 | eqtrd 2770 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℕ0) ∧ ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) |
| 25 | 24 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → (⦋𝑥 / 𝑘⦌𝐶 = 0 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 )) |
| 26 | 25 | imim2d 57 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ0) → ((𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ))) |
| 27 | 26 | ralimdva 3152 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ))) |
| 28 | 12, 27 | mpd 15 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 )) |
| 29 | gsummptnn0fz.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 30 | gsummptnn0fz.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 31 | gsummptnn0fz.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 32 | 20 | fmpt 7100 | . . . . 5 ⊢ (∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ↔ (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵) |
| 33 | 14, 32 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵) |
| 34 | 29 | fvexi 6890 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 35 | nn0ex 12507 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 36 | 34, 35 | pm3.2i 470 | . . . . 5 ⊢ (𝐵 ∈ V ∧ ℕ0 ∈ V) |
| 37 | elmapg 8853 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ ℕ0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) ∈ (𝐵 ↑m ℕ0) ↔ (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵)) | |
| 38 | 36, 37 | mp1i 13 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) ∈ (𝐵 ↑m ℕ0) ↔ (𝑘 ∈ ℕ0 ↦ 𝐶):ℕ0⟶𝐵)) |
| 39 | 33, 38 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ (𝐵 ↑m ℕ0)) |
| 40 | gsummptnn0fz.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 41 | fz0ssnn0 13639 | . . . . 5 ⊢ (0...𝑆) ⊆ ℕ0 | |
| 42 | resmpt 6024 | . . . . 5 ⊢ ((0...𝑆) ⊆ ℕ0 → ((𝑘 ∈ ℕ0 ↦ 𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶)) | |
| 43 | 41, 42 | ax-mp 5 | . . . 4 ⊢ ((𝑘 ∈ ℕ0 ↦ 𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶) |
| 44 | 43 | eqcomi 2744 | . . 3 ⊢ (𝑘 ∈ (0...𝑆) ↦ 𝐶) = ((𝑘 ∈ ℕ0 ↦ 𝐶) ↾ (0...𝑆)) |
| 45 | 29, 30, 31, 39, 40, 44 | fsfnn0gsumfsffz 19964 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))) |
| 46 | 28, 45 | mpd 15 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⦋csb 3874 ⊆ wss 3926 class class class wbr 5119 ↦ cmpt 5201 ↾ cres 5656 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 0cc0 11129 < clt 11269 ℕ0cn0 12501 ...cfz 13524 Basecbs 17228 0gc0g 17453 Σg cgsu 17454 CMndccmn 19761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-0g 17455 df-gsum 17456 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-cntz 19300 df-cmn 19763 |
| This theorem is referenced by: gsummptnn0fzfv 19968 telgsums 19974 gsummoncoe1 22246 pmatcollpwfi 22720 mp2pm2mplem4 22747 |
| Copyright terms: Public domain | W3C validator |