MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptnn0fz Structured version   Visualization version   GIF version

Theorem gsummptnn0fz 19371
Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
gsummptnn0fz.b 𝐵 = (Base‘𝐺)
gsummptnn0fz.0 0 = (0g𝐺)
gsummptnn0fz.g (𝜑𝐺 ∈ CMnd)
gsummptnn0fz.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
gsummptnn0fz.s (𝜑𝑆 ∈ ℕ0)
gsummptnn0fz.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
Assertion
Ref Expression
gsummptnn0fz (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))
Distinct variable groups:   𝐵,𝑘   𝑆,𝑘   0 ,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)

Proof of Theorem gsummptnn0fz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gsummptnn0fz.u . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
2 nfv 1922 . . . . 5 𝑥(𝑆 < 𝑘𝐶 = 0 )
3 nfv 1922 . . . . . 6 𝑘 𝑆 < 𝑥
4 nfcsb1v 3836 . . . . . . 7 𝑘𝑥 / 𝑘𝐶
54nfeq1 2919 . . . . . 6 𝑘𝑥 / 𝑘𝐶 = 0
63, 5nfim 1904 . . . . 5 𝑘(𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 )
7 breq2 5057 . . . . . 6 (𝑘 = 𝑥 → (𝑆 < 𝑘𝑆 < 𝑥))
8 csbeq1a 3825 . . . . . . 7 (𝑘 = 𝑥𝐶 = 𝑥 / 𝑘𝐶)
98eqeq1d 2739 . . . . . 6 (𝑘 = 𝑥 → (𝐶 = 0𝑥 / 𝑘𝐶 = 0 ))
107, 9imbi12d 348 . . . . 5 (𝑘 = 𝑥 → ((𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
112, 6, 10cbvralw 3349 . . . 4 (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
121, 11sylib 221 . . 3 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
13 simpr 488 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
14 gsummptnn0fz.f . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1514anim1ci 619 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵))
16 rspcsbela 4350 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
1715, 16syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
1813, 17jca 515 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵))
1918adantr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → (𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵))
20 eqid 2737 . . . . . . . . 9 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
2120fvmpts 6821 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2219, 21syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
23 simpr 488 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → 𝑥 / 𝑘𝐶 = 0 )
2422, 23eqtrd 2777 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )
2524ex 416 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑥 / 𝑘𝐶 = 0 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ))
2625imim2d 57 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ) → (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )))
2726ralimdva 3100 . . 3 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )))
2812, 27mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ))
29 gsummptnn0fz.b . . 3 𝐵 = (Base‘𝐺)
30 gsummptnn0fz.0 . . 3 0 = (0g𝐺)
31 gsummptnn0fz.g . . 3 (𝜑𝐺 ∈ CMnd)
3220fmpt 6927 . . . . 5 (∀𝑘 ∈ ℕ0 𝐶𝐵 ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵)
3314, 32sylib 221 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐶):ℕ0𝐵)
3429fvexi 6731 . . . . . 6 𝐵 ∈ V
35 nn0ex 12096 . . . . . 6 0 ∈ V
3634, 35pm3.2i 474 . . . . 5 (𝐵 ∈ V ∧ ℕ0 ∈ V)
37 elmapg 8521 . . . . 5 ((𝐵 ∈ V ∧ ℕ0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) ∈ (𝐵m0) ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵))
3836, 37mp1i 13 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0𝐶) ∈ (𝐵m0) ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵))
3933, 38mpbird 260 . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐶) ∈ (𝐵m0))
40 gsummptnn0fz.s . . 3 (𝜑𝑆 ∈ ℕ0)
41 fz0ssnn0 13207 . . . . 5 (0...𝑆) ⊆ ℕ0
42 resmpt 5905 . . . . 5 ((0...𝑆) ⊆ ℕ0 → ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶))
4341, 42ax-mp 5 . . . 4 ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶)
4443eqcomi 2746 . . 3 (𝑘 ∈ (0...𝑆) ↦ 𝐶) = ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆))
4529, 30, 31, 39, 40, 44fsfnn0gsumfsffz 19368 . 2 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ) → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))))
4628, 45mpd 15 1 (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  csb 3811  wss 3866   class class class wbr 5053  cmpt 5135  cres 5553  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  0cc0 10729   < clt 10867  0cn0 12090  ...cfz 13095  Basecbs 16760  0gc0g 16944   Σg cgsu 16945  CMndccmn 19170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-0g 16946  df-gsum 16947  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-cntz 18711  df-cmn 19172
This theorem is referenced by:  gsummptnn0fzfv  19372  telgsums  19378  gsummoncoe1  21225  pmatcollpwfi  21679  mp2pm2mplem4  21706
  Copyright terms: Public domain W3C validator