MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsupp Structured version   Visualization version   GIF version

Theorem mptnn0fsupp 13908
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsupp.s (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Assertion
Ref Expression
mptnn0fsupp (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsupp
StepHypRef Expression
1 mptnn0fsupp.c . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
21ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
3 eqid 2733 . . . . . 6 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
43fnmpt 6628 . . . . 5 (∀𝑘 ∈ ℕ0 𝐶𝐵 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
52, 4syl 17 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
6 nn0ex 12396 . . . . 5 0 ∈ V
76a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
8 mptnn0fsupp.0 . . . . 5 (𝜑0𝑉)
98elexd 3461 . . . 4 (𝜑0 ∈ V)
10 suppvalfn 8106 . . . 4 (((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
115, 7, 9, 10syl3anc 1373 . . 3 (𝜑 → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
12 mptnn0fsupp.s . . . . 5 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
13 nne 2933 . . . . . . . . 9 (¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ↔ ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )
14 simpr 484 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
152ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
16 rspcsbela 4387 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
1714, 15, 16syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
183fvmpts 6940 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
1914, 17, 18syl2anc 584 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2019eqeq1d 2735 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0𝑥 / 𝑘𝐶 = 0 ))
2113, 20bitrid 283 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0𝑥 / 𝑘𝐶 = 0 ))
2221imbi2d 340 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2322ralbidva 3154 . . . . . 6 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2423rexbidva 3155 . . . . 5 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2512, 24mpbird 257 . . . 4 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ))
26 rabssnn0fi 13897 . . . 4 ({𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ))
2725, 26sylibr 234 . . 3 (𝜑 → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } ∈ Fin)
2811, 27eqeltrd 2833 . 2 (𝜑 → ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin)
29 funmpt 6526 . . 3 Fun (𝑘 ∈ ℕ0𝐶)
306mptex 7165 . . 3 (𝑘 ∈ ℕ0𝐶) ∈ V
31 funisfsupp 9260 . . 3 ((Fun (𝑘 ∈ ℕ0𝐶) ∧ (𝑘 ∈ ℕ0𝐶) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3229, 30, 9, 31mp3an12i 1467 . 2 (𝜑 → ((𝑘 ∈ ℕ0𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3328, 32mpbird 257 1 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  csb 3846   class class class wbr 5095  cmpt 5176  Fun wfun 6482   Fn wfn 6483  cfv 6488  (class class class)co 7354   supp csupp 8098  Fincfn 8877   finSupp cfsupp 9254   < clt 11155  0cn0 12390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412
This theorem is referenced by:  mptnn0fsuppd  13909  mptcoe1fsupp  22131  mptcoe1matfsupp  22720  pm2mp  22743  chfacffsupp  22774  chfacfscmulfsupp  22777  chfacfpmmulfsupp  22781  cayhamlem4  22806  ply1mulgsumlem3  48516  ply1mulgsumlem4  48517
  Copyright terms: Public domain W3C validator