![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptnn0fsupp | Structured version Visualization version GIF version |
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.) |
Ref | Expression |
---|---|
mptnn0fsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑉) |
mptnn0fsupp.c | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) |
mptnn0fsupp.s | ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
Ref | Expression |
---|---|
mptnn0fsupp | ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptnn0fsupp.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) | |
2 | 1 | ralrimiva 3140 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
3 | eqid 2726 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) = (𝑘 ∈ ℕ0 ↦ 𝐶) | |
4 | 3 | fnmpt 6684 | . . . . 5 ⊢ (∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0) |
6 | nn0ex 12482 | . . . . 5 ⊢ ℕ0 ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
8 | mptnn0fsupp.0 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑉) | |
9 | 8 | elexd 3489 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
10 | suppvalfn 8154 | . . . 4 ⊢ (((𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) | |
11 | 5, 7, 9, 10 | syl3anc 1368 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) |
12 | mptnn0fsupp.s | . . . . 5 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) | |
13 | nne 2938 | . . . . . . . . 9 ⊢ (¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) | |
14 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
15 | 2 | ad2antrr 723 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
16 | rspcsbela 4430 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) | |
17 | 14, 15, 16 | syl2anc 583 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) |
18 | 3 | fvmpts 6995 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
19 | 14, 17, 18 | syl2anc 583 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
20 | 19 | eqeq1d 2728 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
21 | 13, 20 | bitrid 283 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
22 | 21 | imbi2d 340 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
23 | 22 | ralbidva 3169 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
24 | 23 | rexbidva 3170 | . . . . 5 ⊢ (𝜑 → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
25 | 12, 24 | mpbird 257 | . . . 4 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 )) |
26 | rabssnn0fi 13957 | . . . 4 ⊢ ({𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 )) | |
27 | 25, 26 | sylibr 233 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 } ∈ Fin) |
28 | 11, 27 | eqeltrd 2827 | . 2 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin) |
29 | funmpt 6580 | . . 3 ⊢ Fun (𝑘 ∈ ℕ0 ↦ 𝐶) | |
30 | 6 | mptex 7220 | . . 3 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ V |
31 | funisfsupp 9369 | . . 3 ⊢ ((Fun (𝑘 ∈ ℕ0 ↦ 𝐶) ∧ (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin)) | |
32 | 29, 30, 9, 31 | mp3an12i 1461 | . 2 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin)) |
33 | 28, 32 | mpbird 257 | 1 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ∃wrex 3064 {crab 3426 Vcvv 3468 ⦋csb 3888 class class class wbr 5141 ↦ cmpt 5224 Fun wfun 6531 Fn wfn 6532 ‘cfv 6537 (class class class)co 7405 supp csupp 8146 Fincfn 8941 finSupp cfsupp 9363 < clt 11252 ℕ0cn0 12476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 |
This theorem is referenced by: mptnn0fsuppd 13969 mptcoe1fsupp 22089 mptcoe1matfsupp 22659 pm2mp 22682 chfacffsupp 22713 chfacfscmulfsupp 22716 chfacfpmmulfsupp 22720 cayhamlem4 22745 ply1mulgsumlem3 47349 ply1mulgsumlem4 47350 |
Copyright terms: Public domain | W3C validator |