MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsupp Structured version   Visualization version   GIF version

Theorem mptnn0fsupp 13904
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsupp.s (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Assertion
Ref Expression
mptnn0fsupp (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsupp
StepHypRef Expression
1 mptnn0fsupp.c . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
21ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
3 eqid 2731 . . . . . 6 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
43fnmpt 6621 . . . . 5 (∀𝑘 ∈ ℕ0 𝐶𝐵 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
52, 4syl 17 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
6 nn0ex 12387 . . . . 5 0 ∈ V
76a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
8 mptnn0fsupp.0 . . . . 5 (𝜑0𝑉)
98elexd 3460 . . . 4 (𝜑0 ∈ V)
10 suppvalfn 8098 . . . 4 (((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
115, 7, 9, 10syl3anc 1373 . . 3 (𝜑 → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
12 mptnn0fsupp.s . . . . 5 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
13 nne 2932 . . . . . . . . 9 (¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ↔ ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )
14 simpr 484 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
152ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
16 rspcsbela 4388 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
1714, 15, 16syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
183fvmpts 6932 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
1914, 17, 18syl2anc 584 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2019eqeq1d 2733 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0𝑥 / 𝑘𝐶 = 0 ))
2113, 20bitrid 283 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0𝑥 / 𝑘𝐶 = 0 ))
2221imbi2d 340 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2322ralbidva 3153 . . . . . 6 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2423rexbidva 3154 . . . . 5 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2512, 24mpbird 257 . . . 4 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ))
26 rabssnn0fi 13893 . . . 4 ({𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ))
2725, 26sylibr 234 . . 3 (𝜑 → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } ∈ Fin)
2811, 27eqeltrd 2831 . 2 (𝜑 → ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin)
29 funmpt 6519 . . 3 Fun (𝑘 ∈ ℕ0𝐶)
306mptex 7157 . . 3 (𝑘 ∈ ℕ0𝐶) ∈ V
31 funisfsupp 9251 . . 3 ((Fun (𝑘 ∈ ℕ0𝐶) ∧ (𝑘 ∈ ℕ0𝐶) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3229, 30, 9, 31mp3an12i 1467 . 2 (𝜑 → ((𝑘 ∈ ℕ0𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3328, 32mpbird 257 1 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  csb 3850   class class class wbr 5091  cmpt 5172  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245   < clt 11146  0cn0 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408
This theorem is referenced by:  mptnn0fsuppd  13905  mptcoe1fsupp  22129  mptcoe1matfsupp  22718  pm2mp  22741  chfacffsupp  22772  chfacfscmulfsupp  22775  chfacfpmmulfsupp  22779  cayhamlem4  22804  ply1mulgsumlem3  48426  ply1mulgsumlem4  48427
  Copyright terms: Public domain W3C validator