Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptnn0fsupp | Structured version Visualization version GIF version |
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.) |
Ref | Expression |
---|---|
mptnn0fsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑉) |
mptnn0fsupp.c | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) |
mptnn0fsupp.s | ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
Ref | Expression |
---|---|
mptnn0fsupp | ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptnn0fsupp.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) | |
2 | 1 | ralrimiva 3105 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
3 | eqid 2737 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) = (𝑘 ∈ ℕ0 ↦ 𝐶) | |
4 | 3 | fnmpt 6518 | . . . . 5 ⊢ (∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0) |
6 | nn0ex 12096 | . . . . 5 ⊢ ℕ0 ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
8 | mptnn0fsupp.0 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑉) | |
9 | 8 | elexd 3428 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
10 | suppvalfn 7911 | . . . 4 ⊢ (((𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) | |
11 | 5, 7, 9, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) |
12 | mptnn0fsupp.s | . . . . 5 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) | |
13 | nne 2944 | . . . . . . . . 9 ⊢ (¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) | |
14 | simpr 488 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
15 | 2 | ad2antrr 726 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
16 | rspcsbela 4350 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) | |
17 | 14, 15, 16 | syl2anc 587 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) |
18 | 3 | fvmpts 6821 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
19 | 14, 17, 18 | syl2anc 587 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
20 | 19 | eqeq1d 2739 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
21 | 13, 20 | syl5bb 286 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
22 | 21 | imbi2d 344 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
23 | 22 | ralbidva 3117 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
24 | 23 | rexbidva 3215 | . . . . 5 ⊢ (𝜑 → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
25 | 12, 24 | mpbird 260 | . . . 4 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 )) |
26 | rabssnn0fi 13559 | . . . 4 ⊢ ({𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 )) | |
27 | 25, 26 | sylibr 237 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 } ∈ Fin) |
28 | 11, 27 | eqeltrd 2838 | . 2 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin) |
29 | funmpt 6418 | . . 3 ⊢ Fun (𝑘 ∈ ℕ0 ↦ 𝐶) | |
30 | 6 | mptex 7039 | . . 3 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ V |
31 | funisfsupp 8990 | . . 3 ⊢ ((Fun (𝑘 ∈ ℕ0 ↦ 𝐶) ∧ (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin)) | |
32 | 29, 30, 9, 31 | mp3an12i 1467 | . 2 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin)) |
33 | 28, 32 | mpbird 260 | 1 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ∃wrex 3062 {crab 3065 Vcvv 3408 ⦋csb 3811 class class class wbr 5053 ↦ cmpt 5135 Fun wfun 6374 Fn wfn 6375 ‘cfv 6380 (class class class)co 7213 supp csupp 7903 Fincfn 8626 finSupp cfsupp 8985 < clt 10867 ℕ0cn0 12090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 |
This theorem is referenced by: mptnn0fsuppd 13571 mptcoe1fsupp 21136 mptcoe1matfsupp 21699 pm2mp 21722 chfacffsupp 21753 chfacfscmulfsupp 21756 chfacfpmmulfsupp 21760 cayhamlem4 21785 ply1mulgsumlem3 45402 ply1mulgsumlem4 45403 |
Copyright terms: Public domain | W3C validator |