| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptnn0fsupp | Structured version Visualization version GIF version | ||
| Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.) |
| Ref | Expression |
|---|---|
| mptnn0fsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑉) |
| mptnn0fsupp.c | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) |
| mptnn0fsupp.s | ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
| Ref | Expression |
|---|---|
| mptnn0fsupp | ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptnn0fsupp.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) | |
| 2 | 1 | ralrimiva 3126 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
| 3 | eqid 2730 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) = (𝑘 ∈ ℕ0 ↦ 𝐶) | |
| 4 | 3 | fnmpt 6661 | . . . . 5 ⊢ (∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0) |
| 6 | nn0ex 12455 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
| 8 | mptnn0fsupp.0 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑉) | |
| 9 | 8 | elexd 3474 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 10 | suppvalfn 8150 | . . . 4 ⊢ (((𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) | |
| 11 | 5, 7, 9, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) |
| 12 | mptnn0fsupp.s | . . . . 5 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) | |
| 13 | nne 2930 | . . . . . . . . 9 ⊢ (¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) | |
| 14 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
| 15 | 2 | ad2antrr 726 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
| 16 | rspcsbela 4404 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) |
| 18 | 3 | fvmpts 6974 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
| 19 | 14, 17, 18 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
| 20 | 19 | eqeq1d 2732 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
| 21 | 13, 20 | bitrid 283 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
| 22 | 21 | imbi2d 340 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
| 23 | 22 | ralbidva 3155 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
| 24 | 23 | rexbidva 3156 | . . . . 5 ⊢ (𝜑 → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
| 25 | 12, 24 | mpbird 257 | . . . 4 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 )) |
| 26 | rabssnn0fi 13958 | . . . 4 ⊢ ({𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 )) | |
| 27 | 25, 26 | sylibr 234 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 } ∈ Fin) |
| 28 | 11, 27 | eqeltrd 2829 | . 2 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin) |
| 29 | funmpt 6557 | . . 3 ⊢ Fun (𝑘 ∈ ℕ0 ↦ 𝐶) | |
| 30 | 6 | mptex 7200 | . . 3 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ V |
| 31 | funisfsupp 9325 | . . 3 ⊢ ((Fun (𝑘 ∈ ℕ0 ↦ 𝐶) ∧ (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin)) | |
| 32 | 29, 30, 9, 31 | mp3an12i 1467 | . 2 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin)) |
| 33 | 28, 32 | mpbird 257 | 1 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 Vcvv 3450 ⦋csb 3865 class class class wbr 5110 ↦ cmpt 5191 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 Fincfn 8921 finSupp cfsupp 9319 < clt 11215 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: mptnn0fsuppd 13970 mptcoe1fsupp 22107 mptcoe1matfsupp 22696 pm2mp 22719 chfacffsupp 22750 chfacfscmulfsupp 22753 chfacfpmmulfsupp 22757 cayhamlem4 22782 ply1mulgsumlem3 48381 ply1mulgsumlem4 48382 |
| Copyright terms: Public domain | W3C validator |