MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsupp Structured version   Visualization version   GIF version

Theorem mptnn0fsupp 14048
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsupp.s (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Assertion
Ref Expression
mptnn0fsupp (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsupp
StepHypRef Expression
1 mptnn0fsupp.c . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
21ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
3 eqid 2740 . . . . . 6 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
43fnmpt 6720 . . . . 5 (∀𝑘 ∈ ℕ0 𝐶𝐵 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
52, 4syl 17 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
6 nn0ex 12559 . . . . 5 0 ∈ V
76a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
8 mptnn0fsupp.0 . . . . 5 (𝜑0𝑉)
98elexd 3512 . . . 4 (𝜑0 ∈ V)
10 suppvalfn 8209 . . . 4 (((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
115, 7, 9, 10syl3anc 1371 . . 3 (𝜑 → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
12 mptnn0fsupp.s . . . . 5 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
13 nne 2950 . . . . . . . . 9 (¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ↔ ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )
14 simpr 484 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
152ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
16 rspcsbela 4461 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
1714, 15, 16syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
183fvmpts 7032 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
1914, 17, 18syl2anc 583 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2019eqeq1d 2742 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0𝑥 / 𝑘𝐶 = 0 ))
2113, 20bitrid 283 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0𝑥 / 𝑘𝐶 = 0 ))
2221imbi2d 340 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2322ralbidva 3182 . . . . . 6 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2423rexbidva 3183 . . . . 5 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2512, 24mpbird 257 . . . 4 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ))
26 rabssnn0fi 14037 . . . 4 ({𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ))
2725, 26sylibr 234 . . 3 (𝜑 → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } ∈ Fin)
2811, 27eqeltrd 2844 . 2 (𝜑 → ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin)
29 funmpt 6616 . . 3 Fun (𝑘 ∈ ℕ0𝐶)
306mptex 7260 . . 3 (𝑘 ∈ ℕ0𝐶) ∈ V
31 funisfsupp 9437 . . 3 ((Fun (𝑘 ∈ ℕ0𝐶) ∧ (𝑘 ∈ ℕ0𝐶) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3229, 30, 9, 31mp3an12i 1465 . 2 (𝜑 → ((𝑘 ∈ ℕ0𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3328, 32mpbird 257 1 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  csb 3921   class class class wbr 5166  cmpt 5249  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448   supp csupp 8201  Fincfn 9003   finSupp cfsupp 9431   < clt 11324  0cn0 12553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  mptnn0fsuppd  14049  mptcoe1fsupp  22238  mptcoe1matfsupp  22829  pm2mp  22852  chfacffsupp  22883  chfacfscmulfsupp  22886  chfacfpmmulfsupp  22890  cayhamlem4  22915  ply1mulgsumlem3  48117  ply1mulgsumlem4  48118
  Copyright terms: Public domain W3C validator