Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptnn0fsupp | Structured version Visualization version GIF version |
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.) |
Ref | Expression |
---|---|
mptnn0fsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑉) |
mptnn0fsupp.c | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) |
mptnn0fsupp.s | ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
Ref | Expression |
---|---|
mptnn0fsupp | ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptnn0fsupp.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) | |
2 | 1 | ralrimiva 3103 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
3 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) = (𝑘 ∈ ℕ0 ↦ 𝐶) | |
4 | 3 | fnmpt 6573 | . . . . 5 ⊢ (∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0) |
6 | nn0ex 12239 | . . . . 5 ⊢ ℕ0 ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
8 | mptnn0fsupp.0 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑉) | |
9 | 8 | elexd 3452 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
10 | suppvalfn 7985 | . . . 4 ⊢ (((𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) | |
11 | 5, 7, 9, 10 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) |
12 | mptnn0fsupp.s | . . . . 5 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) | |
13 | nne 2947 | . . . . . . . . 9 ⊢ (¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) | |
14 | simpr 485 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
15 | 2 | ad2antrr 723 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
16 | rspcsbela 4369 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) | |
17 | 14, 15, 16 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) |
18 | 3 | fvmpts 6878 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
19 | 14, 17, 18 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
20 | 19 | eqeq1d 2740 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
21 | 13, 20 | bitrid 282 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
22 | 21 | imbi2d 341 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
23 | 22 | ralbidva 3111 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
24 | 23 | rexbidva 3225 | . . . . 5 ⊢ (𝜑 → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
25 | 12, 24 | mpbird 256 | . . . 4 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 )) |
26 | rabssnn0fi 13706 | . . . 4 ⊢ ({𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 )) | |
27 | 25, 26 | sylibr 233 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 } ∈ Fin) |
28 | 11, 27 | eqeltrd 2839 | . 2 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin) |
29 | funmpt 6472 | . . 3 ⊢ Fun (𝑘 ∈ ℕ0 ↦ 𝐶) | |
30 | 6 | mptex 7099 | . . 3 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ V |
31 | funisfsupp 9133 | . . 3 ⊢ ((Fun (𝑘 ∈ ℕ0 ↦ 𝐶) ∧ (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin)) | |
32 | 29, 30, 9, 31 | mp3an12i 1464 | . 2 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin)) |
33 | 28, 32 | mpbird 256 | 1 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 {crab 3068 Vcvv 3432 ⦋csb 3832 class class class wbr 5074 ↦ cmpt 5157 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 Fincfn 8733 finSupp cfsupp 9128 < clt 11009 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 |
This theorem is referenced by: mptnn0fsuppd 13718 mptcoe1fsupp 21386 mptcoe1matfsupp 21951 pm2mp 21974 chfacffsupp 22005 chfacfscmulfsupp 22008 chfacfpmmulfsupp 22012 cayhamlem4 22037 ply1mulgsumlem3 45729 ply1mulgsumlem4 45730 |
Copyright terms: Public domain | W3C validator |