| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptnn0fsupp | Structured version Visualization version GIF version | ||
| Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.) |
| Ref | Expression |
|---|---|
| mptnn0fsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑉) |
| mptnn0fsupp.c | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) |
| mptnn0fsupp.s | ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
| Ref | Expression |
|---|---|
| mptnn0fsupp | ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptnn0fsupp.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ 𝐵) | |
| 2 | 1 | ralrimiva 3146 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
| 3 | eqid 2737 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) = (𝑘 ∈ ℕ0 ↦ 𝐶) | |
| 4 | 3 | fnmpt 6708 | . . . . 5 ⊢ (∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0) |
| 6 | nn0ex 12532 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
| 8 | mptnn0fsupp.0 | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑉) | |
| 9 | 8 | elexd 3504 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 10 | suppvalfn 8193 | . . . 4 ⊢ (((𝑘 ∈ ℕ0 ↦ 𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) | |
| 11 | 5, 7, 9, 10 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 }) |
| 12 | mptnn0fsupp.s | . . . . 5 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 )) | |
| 13 | nne 2944 | . . . . . . . . 9 ⊢ (¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ) | |
| 14 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
| 15 | 2 | ad2antrr 726 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
| 16 | rspcsbela 4438 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) |
| 18 | 3 | fvmpts 7019 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ0 ∧ ⦋𝑥 / 𝑘⦌𝐶 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
| 19 | 14, 17, 18 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐶) |
| 20 | 19 | eqeq1d 2739 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) = 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
| 21 | 13, 20 | bitrid 283 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ↔ ⦋𝑥 / 𝑘⦌𝐶 = 0 )) |
| 22 | 21 | imbi2d 340 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
| 23 | 22 | ralbidva 3176 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
| 24 | 23 | rexbidva 3177 | . . . . 5 ⊢ (𝜑 → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐶 = 0 ))) |
| 25 | 12, 24 | mpbird 257 | . . . 4 ⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 )) |
| 26 | rabssnn0fi 14027 | . . . 4 ⊢ ({𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 )) | |
| 27 | 25, 26 | sylibr 234 | . . 3 ⊢ (𝜑 → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0 ↦ 𝐶)‘𝑥) ≠ 0 } ∈ Fin) |
| 28 | 11, 27 | eqeltrd 2841 | . 2 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin) |
| 29 | funmpt 6604 | . . 3 ⊢ Fun (𝑘 ∈ ℕ0 ↦ 𝐶) | |
| 30 | 6 | mptex 7243 | . . 3 ⊢ (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ V |
| 31 | funisfsupp 9407 | . . 3 ⊢ ((Fun (𝑘 ∈ ℕ0 ↦ 𝐶) ∧ (𝑘 ∈ ℕ0 ↦ 𝐶) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin)) | |
| 32 | 29, 30, 9, 31 | mp3an12i 1467 | . 2 ⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0 ↦ 𝐶) supp 0 ) ∈ Fin)) |
| 33 | 28, 32 | mpbird 257 | 1 ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐶) finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3436 Vcvv 3480 ⦋csb 3899 class class class wbr 5143 ↦ cmpt 5225 Fun wfun 6555 Fn wfn 6556 ‘cfv 6561 (class class class)co 7431 supp csupp 8185 Fincfn 8985 finSupp cfsupp 9401 < clt 11295 ℕ0cn0 12526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 |
| This theorem is referenced by: mptnn0fsuppd 14039 mptcoe1fsupp 22217 mptcoe1matfsupp 22808 pm2mp 22831 chfacffsupp 22862 chfacfscmulfsupp 22865 chfacfpmmulfsupp 22869 cayhamlem4 22894 ply1mulgsumlem3 48305 ply1mulgsumlem4 48306 |
| Copyright terms: Public domain | W3C validator |