MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsupp Structured version   Visualization version   GIF version

Theorem mptnn0fsupp 13902
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0 (𝜑0𝑉)
mptnn0fsupp.c ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
mptnn0fsupp.s (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
Assertion
Ref Expression
mptnn0fsupp (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝐶,𝑠,𝑥   𝜑,𝑘,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑠)   𝐶(𝑘)   𝑉(𝑥,𝑘,𝑠)   0 (𝑘)

Proof of Theorem mptnn0fsupp
StepHypRef Expression
1 mptnn0fsupp.c . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐶𝐵)
21ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
3 eqid 2736 . . . . . 6 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
43fnmpt 6641 . . . . 5 (∀𝑘 ∈ ℕ0 𝐶𝐵 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
52, 4syl 17 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐶) Fn ℕ0)
6 nn0ex 12419 . . . . 5 0 ∈ V
76a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
8 mptnn0fsupp.0 . . . . 5 (𝜑0𝑉)
98elexd 3465 . . . 4 (𝜑0 ∈ V)
10 suppvalfn 8100 . . . 4 (((𝑘 ∈ ℕ0𝐶) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
115, 7, 9, 10syl3anc 1371 . . 3 (𝜑 → ((𝑘 ∈ ℕ0𝐶) supp 0 ) = {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 })
12 mptnn0fsupp.s . . . . 5 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
13 nne 2947 . . . . . . . . 9 (¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ↔ ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )
14 simpr 485 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
152ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
16 rspcsbela 4395 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
1714, 15, 16syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
183fvmpts 6951 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
1914, 17, 18syl2anc 584 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2019eqeq1d 2738 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0𝑥 / 𝑘𝐶 = 0 ))
2113, 20bitrid 282 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0𝑥 / 𝑘𝐶 = 0 ))
2221imbi2d 340 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2322ralbidva 3172 . . . . . 6 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2423rexbidva 3173 . . . . 5 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
2512, 24mpbird 256 . . . 4 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ))
26 rabssnn0fi 13891 . . . 4 ({𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 ))
2725, 26sylibr 233 . . 3 (𝜑 → {𝑥 ∈ ℕ0 ∣ ((𝑘 ∈ ℕ0𝐶)‘𝑥) ≠ 0 } ∈ Fin)
2811, 27eqeltrd 2838 . 2 (𝜑 → ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin)
29 funmpt 6539 . . 3 Fun (𝑘 ∈ ℕ0𝐶)
306mptex 7173 . . 3 (𝑘 ∈ ℕ0𝐶) ∈ V
31 funisfsupp 9310 . . 3 ((Fun (𝑘 ∈ ℕ0𝐶) ∧ (𝑘 ∈ ℕ0𝐶) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3229, 30, 9, 31mp3an12i 1465 . 2 (𝜑 → ((𝑘 ∈ ℕ0𝐶) finSupp 0 ↔ ((𝑘 ∈ ℕ0𝐶) supp 0 ) ∈ Fin))
3328, 32mpbird 256 1 (𝜑 → (𝑘 ∈ ℕ0𝐶) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  csb 3855   class class class wbr 5105  cmpt 5188  Fun wfun 6490   Fn wfn 6491  cfv 6496  (class class class)co 7357   supp csupp 8092  Fincfn 8883   finSupp cfsupp 9305   < clt 11189  0cn0 12413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425
This theorem is referenced by:  mptnn0fsuppd  13903  mptcoe1fsupp  21586  mptcoe1matfsupp  22151  pm2mp  22174  chfacffsupp  22205  chfacfscmulfsupp  22208  chfacfpmmulfsupp  22212  cayhamlem4  22237  ply1mulgsumlem3  46459  ply1mulgsumlem4  46460
  Copyright terms: Public domain W3C validator