| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummpt1n0 | Structured version Visualization version GIF version | ||
| Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 19876. (Contributed by AV, 11-Oct-2019.) |
| Ref | Expression |
|---|---|
| gsummpt1n0.0 | ⊢ 0 = (0g‘𝐺) |
| gsummpt1n0.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| gsummpt1n0.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| gsummpt1n0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| gsummpt1n0.f | ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) |
| gsummpt1n0.a | ⊢ (𝜑 → ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) |
| Ref | Expression |
|---|---|
| gsummpt1n0 | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ⦋𝑋 / 𝑛⦌𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | gsummpt1n0.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummpt1n0.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 4 | gsummpt1n0.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | gsummpt1n0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 6 | gsummpt1n0.a | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) | |
| 7 | 6 | r19.21bi 3224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 𝐴 ∈ (Base‘𝐺)) |
| 8 | 1, 2 | mndidcl 18654 | . . . . . . 7 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
| 9 | 3, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 0 ∈ (Base‘𝐺)) |
| 11 | 7, 10 | ifcld 4522 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (Base‘𝐺)) |
| 12 | gsummpt1n0.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) | |
| 13 | 11, 12 | fmptd 7047 | . . 3 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 14 | 12 | oveq1i 7356 | . . . 4 ⊢ (𝐹 supp 0 ) = ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) |
| 15 | eldifsni 4742 | . . . . . . 7 ⊢ (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛 ≠ 𝑋) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛 ≠ 𝑋) |
| 17 | ifnefalse 4487 | . . . . . 6 ⊢ (𝑛 ≠ 𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 ) | |
| 18 | 16, 17 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 ) |
| 19 | 18, 4 | suppss2 8130 | . . . 4 ⊢ (𝜑 → ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) |
| 20 | 14, 19 | eqsstrid 3973 | . . 3 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋}) |
| 21 | 1, 2, 3, 4, 5, 13, 20 | gsumpt 19872 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐹‘𝑋)) |
| 22 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑦if(𝑛 = 𝑋, 𝐴, 0 ) | |
| 23 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑛 𝑦 = 𝑋 | |
| 24 | nfcsb1v 3874 | . . . . . 6 ⊢ Ⅎ𝑛⦋𝑦 / 𝑛⦌𝐴 | |
| 25 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑛 0 | |
| 26 | 23, 24, 25 | nfif 4506 | . . . . 5 ⊢ Ⅎ𝑛if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 ) |
| 27 | eqeq1 2735 | . . . . . 6 ⊢ (𝑛 = 𝑦 → (𝑛 = 𝑋 ↔ 𝑦 = 𝑋)) | |
| 28 | csbeq1a 3864 | . . . . . 6 ⊢ (𝑛 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑛⦌𝐴) | |
| 29 | 27, 28 | ifbieq1d 4500 | . . . . 5 ⊢ (𝑛 = 𝑦 → if(𝑛 = 𝑋, 𝐴, 0 ) = if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 )) |
| 30 | 22, 26, 29 | cbvmpt 5193 | . . . 4 ⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 )) |
| 31 | 12, 30 | eqtri 2754 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 )) |
| 32 | iftrue 4481 | . . . 4 ⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 ) = ⦋𝑦 / 𝑛⦌𝐴) | |
| 33 | csbeq1 3853 | . . . 4 ⊢ (𝑦 = 𝑋 → ⦋𝑦 / 𝑛⦌𝐴 = ⦋𝑋 / 𝑛⦌𝐴) | |
| 34 | 32, 33 | eqtrd 2766 | . . 3 ⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 ) = ⦋𝑋 / 𝑛⦌𝐴) |
| 35 | rspcsbela 4388 | . . . 4 ⊢ ((𝑋 ∈ 𝐼 ∧ ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) → ⦋𝑋 / 𝑛⦌𝐴 ∈ (Base‘𝐺)) | |
| 36 | 5, 6, 35 | syl2anc 584 | . . 3 ⊢ (𝜑 → ⦋𝑋 / 𝑛⦌𝐴 ∈ (Base‘𝐺)) |
| 37 | 31, 34, 5, 36 | fvmptd3 6952 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) = ⦋𝑋 / 𝑛⦌𝐴) |
| 38 | 21, 37 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ⦋𝑋 / 𝑛⦌𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⦋csb 3850 ∖ cdif 3899 ifcif 4475 {csn 4576 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 Basecbs 17117 0gc0g 17340 Σg cgsu 17341 Mndcmnd 18639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-gsum 17343 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 |
| This theorem is referenced by: gsummptif1n0 19876 gsummoncoe1 22221 scmatscm 22426 idpm2idmp 22714 mp2pm2mplem4 22722 monmat2matmon 22737 |
| Copyright terms: Public domain | W3C validator |