MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummpt1n0 Structured version   Visualization version   GIF version

Theorem gsummpt1n0 19984
Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 19985. (Contributed by AV, 11-Oct-2019.)
Hypotheses
Ref Expression
gsummpt1n0.0 0 = (0g𝐺)
gsummpt1n0.g (𝜑𝐺 ∈ Mnd)
gsummpt1n0.i (𝜑𝐼𝑊)
gsummpt1n0.x (𝜑𝑋𝐼)
gsummpt1n0.f 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
gsummpt1n0.a (𝜑 → ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺))
Assertion
Ref Expression
gsummpt1n0 (𝜑 → (𝐺 Σg 𝐹) = 𝑋 / 𝑛𝐴)
Distinct variable groups:   𝑛,𝐺   𝑛,𝐼   𝑛,𝑋   𝜑,𝑛   0 ,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐹(𝑛)   𝑊(𝑛)

Proof of Theorem gsummpt1n0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsummpt1n0.0 . . 3 0 = (0g𝐺)
3 gsummpt1n0.g . . 3 (𝜑𝐺 ∈ Mnd)
4 gsummpt1n0.i . . 3 (𝜑𝐼𝑊)
5 gsummpt1n0.x . . 3 (𝜑𝑋𝐼)
6 gsummpt1n0.a . . . . . 6 (𝜑 → ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺))
76r19.21bi 3250 . . . . 5 ((𝜑𝑛𝐼) → 𝐴 ∈ (Base‘𝐺))
81, 2mndidcl 18763 . . . . . . 7 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
93, 8syl 17 . . . . . 6 (𝜑0 ∈ (Base‘𝐺))
109adantr 480 . . . . 5 ((𝜑𝑛𝐼) → 0 ∈ (Base‘𝐺))
117, 10ifcld 4571 . . . 4 ((𝜑𝑛𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (Base‘𝐺))
12 gsummpt1n0.f . . . 4 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
1311, 12fmptd 7133 . . 3 (𝜑𝐹:𝐼⟶(Base‘𝐺))
1412oveq1i 7442 . . . 4 (𝐹 supp 0 ) = ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 )
15 eldifsni 4789 . . . . . . 7 (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛𝑋)
1615adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛𝑋)
17 ifnefalse 4536 . . . . . 6 (𝑛𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
1816, 17syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
1918, 4suppss2 8226 . . . 4 (𝜑 → ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋})
2014, 19eqsstrid 4021 . . 3 (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
211, 2, 3, 4, 5, 13, 20gsumpt 19981 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))
22 nfcv 2904 . . . . 5 𝑦if(𝑛 = 𝑋, 𝐴, 0 )
23 nfv 1913 . . . . . 6 𝑛 𝑦 = 𝑋
24 nfcsb1v 3922 . . . . . 6 𝑛𝑦 / 𝑛𝐴
25 nfcv 2904 . . . . . 6 𝑛 0
2623, 24, 25nfif 4555 . . . . 5 𝑛if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 )
27 eqeq1 2740 . . . . . 6 (𝑛 = 𝑦 → (𝑛 = 𝑋𝑦 = 𝑋))
28 csbeq1a 3912 . . . . . 6 (𝑛 = 𝑦𝐴 = 𝑦 / 𝑛𝐴)
2927, 28ifbieq1d 4549 . . . . 5 (𝑛 = 𝑦 → if(𝑛 = 𝑋, 𝐴, 0 ) = if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3022, 26, 29cbvmpt 5252 . . . 4 (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3112, 30eqtri 2764 . . 3 𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
32 iftrue 4530 . . . 4 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ) = 𝑦 / 𝑛𝐴)
33 csbeq1 3901 . . . 4 (𝑦 = 𝑋𝑦 / 𝑛𝐴 = 𝑋 / 𝑛𝐴)
3432, 33eqtrd 2776 . . 3 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ) = 𝑋 / 𝑛𝐴)
35 rspcsbela 4437 . . . 4 ((𝑋𝐼 ∧ ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺)) → 𝑋 / 𝑛𝐴 ∈ (Base‘𝐺))
365, 6, 35syl2anc 584 . . 3 (𝜑𝑋 / 𝑛𝐴 ∈ (Base‘𝐺))
3731, 34, 5, 36fvmptd3 7038 . 2 (𝜑 → (𝐹𝑋) = 𝑋 / 𝑛𝐴)
3821, 37eqtrd 2776 1 (𝜑 → (𝐺 Σg 𝐹) = 𝑋 / 𝑛𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  csb 3898  cdif 3947  ifcif 4524  {csn 4625  cmpt 5224  cfv 6560  (class class class)co 7432   supp csupp 8186  Basecbs 17248  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801
This theorem is referenced by:  gsummptif1n0  19985  gsummoncoe1  22313  scmatscm  22520  idpm2idmp  22808  mp2pm2mplem4  22816  monmat2matmon  22831
  Copyright terms: Public domain W3C validator