Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummpt1n0 | Structured version Visualization version GIF version |
Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 19482. (Contributed by AV, 11-Oct-2019.) |
Ref | Expression |
---|---|
gsummpt1n0.0 | ⊢ 0 = (0g‘𝐺) |
gsummpt1n0.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsummpt1n0.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
gsummpt1n0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
gsummpt1n0.f | ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) |
gsummpt1n0.a | ⊢ (𝜑 → ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) |
Ref | Expression |
---|---|
gsummpt1n0 | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ⦋𝑋 / 𝑛⦌𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | gsummpt1n0.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsummpt1n0.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
4 | gsummpt1n0.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | gsummpt1n0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
6 | gsummpt1n0.a | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) | |
7 | 6 | r19.21bi 3132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 𝐴 ∈ (Base‘𝐺)) |
8 | 1, 2 | mndidcl 18315 | . . . . . . 7 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
9 | 3, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 0 ∈ (Base‘𝐺)) |
11 | 7, 10 | ifcld 4502 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (Base‘𝐺)) |
12 | gsummpt1n0.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) | |
13 | 11, 12 | fmptd 6970 | . . 3 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
14 | 12 | oveq1i 7265 | . . . 4 ⊢ (𝐹 supp 0 ) = ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) |
15 | eldifsni 4720 | . . . . . . 7 ⊢ (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛 ≠ 𝑋) | |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛 ≠ 𝑋) |
17 | ifnefalse 4468 | . . . . . 6 ⊢ (𝑛 ≠ 𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 ) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 ) |
19 | 18, 4 | suppss2 7987 | . . . 4 ⊢ (𝜑 → ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) |
20 | 14, 19 | eqsstrid 3965 | . . 3 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋}) |
21 | 1, 2, 3, 4, 5, 13, 20 | gsumpt 19478 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐹‘𝑋)) |
22 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑦if(𝑛 = 𝑋, 𝐴, 0 ) | |
23 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑛 𝑦 = 𝑋 | |
24 | nfcsb1v 3853 | . . . . . 6 ⊢ Ⅎ𝑛⦋𝑦 / 𝑛⦌𝐴 | |
25 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑛 0 | |
26 | 23, 24, 25 | nfif 4486 | . . . . 5 ⊢ Ⅎ𝑛if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 ) |
27 | eqeq1 2742 | . . . . . 6 ⊢ (𝑛 = 𝑦 → (𝑛 = 𝑋 ↔ 𝑦 = 𝑋)) | |
28 | csbeq1a 3842 | . . . . . 6 ⊢ (𝑛 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑛⦌𝐴) | |
29 | 27, 28 | ifbieq1d 4480 | . . . . 5 ⊢ (𝑛 = 𝑦 → if(𝑛 = 𝑋, 𝐴, 0 ) = if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 )) |
30 | 22, 26, 29 | cbvmpt 5181 | . . . 4 ⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 )) |
31 | 12, 30 | eqtri 2766 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 )) |
32 | iftrue 4462 | . . . 4 ⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 ) = ⦋𝑦 / 𝑛⦌𝐴) | |
33 | csbeq1 3831 | . . . 4 ⊢ (𝑦 = 𝑋 → ⦋𝑦 / 𝑛⦌𝐴 = ⦋𝑋 / 𝑛⦌𝐴) | |
34 | 32, 33 | eqtrd 2778 | . . 3 ⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 ) = ⦋𝑋 / 𝑛⦌𝐴) |
35 | rspcsbela 4366 | . . . 4 ⊢ ((𝑋 ∈ 𝐼 ∧ ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) → ⦋𝑋 / 𝑛⦌𝐴 ∈ (Base‘𝐺)) | |
36 | 5, 6, 35 | syl2anc 583 | . . 3 ⊢ (𝜑 → ⦋𝑋 / 𝑛⦌𝐴 ∈ (Base‘𝐺)) |
37 | 31, 34, 5, 36 | fvmptd3 6880 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) = ⦋𝑋 / 𝑛⦌𝐴) |
38 | 21, 37 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ⦋𝑋 / 𝑛⦌𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ⦋csb 3828 ∖ cdif 3880 ifcif 4456 {csn 4558 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 Basecbs 16840 0gc0g 17067 Σg cgsu 17068 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 |
This theorem is referenced by: gsummptif1n0 19482 gsummoncoe1 21385 scmatscm 21570 idpm2idmp 21858 mp2pm2mplem4 21866 monmat2matmon 21881 |
Copyright terms: Public domain | W3C validator |