| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummpt1n0 | Structured version Visualization version GIF version | ||
| Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 19896. (Contributed by AV, 11-Oct-2019.) |
| Ref | Expression |
|---|---|
| gsummpt1n0.0 | ⊢ 0 = (0g‘𝐺) |
| gsummpt1n0.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| gsummpt1n0.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| gsummpt1n0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| gsummpt1n0.f | ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) |
| gsummpt1n0.a | ⊢ (𝜑 → ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) |
| Ref | Expression |
|---|---|
| gsummpt1n0 | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ⦋𝑋 / 𝑛⦌𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | gsummpt1n0.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummpt1n0.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 4 | gsummpt1n0.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | gsummpt1n0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 6 | gsummpt1n0.a | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) | |
| 7 | 6 | r19.21bi 3229 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 𝐴 ∈ (Base‘𝐺)) |
| 8 | 1, 2 | mndidcl 18676 | . . . . . . 7 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
| 9 | 3, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 0 ∈ (Base‘𝐺)) |
| 11 | 7, 10 | ifcld 4535 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (Base‘𝐺)) |
| 12 | gsummpt1n0.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) | |
| 13 | 11, 12 | fmptd 7086 | . . 3 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 14 | 12 | oveq1i 7397 | . . . 4 ⊢ (𝐹 supp 0 ) = ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) |
| 15 | eldifsni 4754 | . . . . . . 7 ⊢ (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛 ≠ 𝑋) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛 ≠ 𝑋) |
| 17 | ifnefalse 4500 | . . . . . 6 ⊢ (𝑛 ≠ 𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 ) | |
| 18 | 16, 17 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 ) |
| 19 | 18, 4 | suppss2 8179 | . . . 4 ⊢ (𝜑 → ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) |
| 20 | 14, 19 | eqsstrid 3985 | . . 3 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋}) |
| 21 | 1, 2, 3, 4, 5, 13, 20 | gsumpt 19892 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐹‘𝑋)) |
| 22 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑦if(𝑛 = 𝑋, 𝐴, 0 ) | |
| 23 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑛 𝑦 = 𝑋 | |
| 24 | nfcsb1v 3886 | . . . . . 6 ⊢ Ⅎ𝑛⦋𝑦 / 𝑛⦌𝐴 | |
| 25 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑛 0 | |
| 26 | 23, 24, 25 | nfif 4519 | . . . . 5 ⊢ Ⅎ𝑛if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 ) |
| 27 | eqeq1 2733 | . . . . . 6 ⊢ (𝑛 = 𝑦 → (𝑛 = 𝑋 ↔ 𝑦 = 𝑋)) | |
| 28 | csbeq1a 3876 | . . . . . 6 ⊢ (𝑛 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑛⦌𝐴) | |
| 29 | 27, 28 | ifbieq1d 4513 | . . . . 5 ⊢ (𝑛 = 𝑦 → if(𝑛 = 𝑋, 𝐴, 0 ) = if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 )) |
| 30 | 22, 26, 29 | cbvmpt 5209 | . . . 4 ⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 )) |
| 31 | 12, 30 | eqtri 2752 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 )) |
| 32 | iftrue 4494 | . . . 4 ⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 ) = ⦋𝑦 / 𝑛⦌𝐴) | |
| 33 | csbeq1 3865 | . . . 4 ⊢ (𝑦 = 𝑋 → ⦋𝑦 / 𝑛⦌𝐴 = ⦋𝑋 / 𝑛⦌𝐴) | |
| 34 | 32, 33 | eqtrd 2764 | . . 3 ⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, ⦋𝑦 / 𝑛⦌𝐴, 0 ) = ⦋𝑋 / 𝑛⦌𝐴) |
| 35 | rspcsbela 4401 | . . . 4 ⊢ ((𝑋 ∈ 𝐼 ∧ ∀𝑛 ∈ 𝐼 𝐴 ∈ (Base‘𝐺)) → ⦋𝑋 / 𝑛⦌𝐴 ∈ (Base‘𝐺)) | |
| 36 | 5, 6, 35 | syl2anc 584 | . . 3 ⊢ (𝜑 → ⦋𝑋 / 𝑛⦌𝐴 ∈ (Base‘𝐺)) |
| 37 | 31, 34, 5, 36 | fvmptd3 6991 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) = ⦋𝑋 / 𝑛⦌𝐴) |
| 38 | 21, 37 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ⦋𝑋 / 𝑛⦌𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⦋csb 3862 ∖ cdif 3911 ifcif 4488 {csn 4589 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 Basecbs 17179 0gc0g 17402 Σg cgsu 17403 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 |
| This theorem is referenced by: gsummptif1n0 19896 gsummoncoe1 22195 scmatscm 22400 idpm2idmp 22688 mp2pm2mplem4 22696 monmat2matmon 22711 |
| Copyright terms: Public domain | W3C validator |