MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummpt1n0 Structured version   Visualization version   GIF version

Theorem gsummpt1n0 19885
Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 19886. (Contributed by AV, 11-Oct-2019.)
Hypotheses
Ref Expression
gsummpt1n0.0 0 = (0g𝐺)
gsummpt1n0.g (𝜑𝐺 ∈ Mnd)
gsummpt1n0.i (𝜑𝐼𝑊)
gsummpt1n0.x (𝜑𝑋𝐼)
gsummpt1n0.f 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
gsummpt1n0.a (𝜑 → ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺))
Assertion
Ref Expression
gsummpt1n0 (𝜑 → (𝐺 Σg 𝐹) = 𝑋 / 𝑛𝐴)
Distinct variable groups:   𝑛,𝐺   𝑛,𝐼   𝑛,𝑋   𝜑,𝑛   0 ,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐹(𝑛)   𝑊(𝑛)

Proof of Theorem gsummpt1n0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsummpt1n0.0 . . 3 0 = (0g𝐺)
3 gsummpt1n0.g . . 3 (𝜑𝐺 ∈ Mnd)
4 gsummpt1n0.i . . 3 (𝜑𝐼𝑊)
5 gsummpt1n0.x . . 3 (𝜑𝑋𝐼)
6 gsummpt1n0.a . . . . . 6 (𝜑 → ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺))
76r19.21bi 3242 . . . . 5 ((𝜑𝑛𝐼) → 𝐴 ∈ (Base‘𝐺))
81, 2mndidcl 18682 . . . . . . 7 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
93, 8syl 17 . . . . . 6 (𝜑0 ∈ (Base‘𝐺))
109adantr 480 . . . . 5 ((𝜑𝑛𝐼) → 0 ∈ (Base‘𝐺))
117, 10ifcld 4569 . . . 4 ((𝜑𝑛𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (Base‘𝐺))
12 gsummpt1n0.f . . . 4 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
1311, 12fmptd 7109 . . 3 (𝜑𝐹:𝐼⟶(Base‘𝐺))
1412oveq1i 7415 . . . 4 (𝐹 supp 0 ) = ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 )
15 eldifsni 4788 . . . . . . 7 (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛𝑋)
1615adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛𝑋)
17 ifnefalse 4535 . . . . . 6 (𝑛𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
1816, 17syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
1918, 4suppss2 8186 . . . 4 (𝜑 → ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋})
2014, 19eqsstrid 4025 . . 3 (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
211, 2, 3, 4, 5, 13, 20gsumpt 19882 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))
22 nfcv 2897 . . . . 5 𝑦if(𝑛 = 𝑋, 𝐴, 0 )
23 nfv 1909 . . . . . 6 𝑛 𝑦 = 𝑋
24 nfcsb1v 3913 . . . . . 6 𝑛𝑦 / 𝑛𝐴
25 nfcv 2897 . . . . . 6 𝑛 0
2623, 24, 25nfif 4553 . . . . 5 𝑛if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 )
27 eqeq1 2730 . . . . . 6 (𝑛 = 𝑦 → (𝑛 = 𝑋𝑦 = 𝑋))
28 csbeq1a 3902 . . . . . 6 (𝑛 = 𝑦𝐴 = 𝑦 / 𝑛𝐴)
2927, 28ifbieq1d 4547 . . . . 5 (𝑛 = 𝑦 → if(𝑛 = 𝑋, 𝐴, 0 ) = if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3022, 26, 29cbvmpt 5252 . . . 4 (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3112, 30eqtri 2754 . . 3 𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
32 iftrue 4529 . . . 4 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ) = 𝑦 / 𝑛𝐴)
33 csbeq1 3891 . . . 4 (𝑦 = 𝑋𝑦 / 𝑛𝐴 = 𝑋 / 𝑛𝐴)
3432, 33eqtrd 2766 . . 3 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ) = 𝑋 / 𝑛𝐴)
35 rspcsbela 4430 . . . 4 ((𝑋𝐼 ∧ ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺)) → 𝑋 / 𝑛𝐴 ∈ (Base‘𝐺))
365, 6, 35syl2anc 583 . . 3 (𝜑𝑋 / 𝑛𝐴 ∈ (Base‘𝐺))
3731, 34, 5, 36fvmptd3 7015 . 2 (𝜑 → (𝐹𝑋) = 𝑋 / 𝑛𝐴)
3821, 37eqtrd 2766 1 (𝜑 → (𝐺 Σg 𝐹) = 𝑋 / 𝑛𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2934  wral 3055  csb 3888  cdif 3940  ifcif 4523  {csn 4623  cmpt 5224  cfv 6537  (class class class)co 7405   supp csupp 8146  Basecbs 17153  0gc0g 17394   Σg cgsu 17395  Mndcmnd 18667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-seq 13973  df-hash 14296  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-0g 17396  df-gsum 17397  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-mulg 18996  df-cntz 19233  df-cmn 19702
This theorem is referenced by:  gsummptif1n0  19886  gsummoncoe1  22182  scmatscm  22370  idpm2idmp  22658  mp2pm2mplem4  22666  monmat2matmon  22681
  Copyright terms: Public domain W3C validator