MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummpt1n0 Structured version   Visualization version   GIF version

Theorem gsummpt1n0 19875
Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 19876. (Contributed by AV, 11-Oct-2019.)
Hypotheses
Ref Expression
gsummpt1n0.0 0 = (0g𝐺)
gsummpt1n0.g (𝜑𝐺 ∈ Mnd)
gsummpt1n0.i (𝜑𝐼𝑊)
gsummpt1n0.x (𝜑𝑋𝐼)
gsummpt1n0.f 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
gsummpt1n0.a (𝜑 → ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺))
Assertion
Ref Expression
gsummpt1n0 (𝜑 → (𝐺 Σg 𝐹) = 𝑋 / 𝑛𝐴)
Distinct variable groups:   𝑛,𝐺   𝑛,𝐼   𝑛,𝑋   𝜑,𝑛   0 ,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐹(𝑛)   𝑊(𝑛)

Proof of Theorem gsummpt1n0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsummpt1n0.0 . . 3 0 = (0g𝐺)
3 gsummpt1n0.g . . 3 (𝜑𝐺 ∈ Mnd)
4 gsummpt1n0.i . . 3 (𝜑𝐼𝑊)
5 gsummpt1n0.x . . 3 (𝜑𝑋𝐼)
6 gsummpt1n0.a . . . . . 6 (𝜑 → ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺))
76r19.21bi 3224 . . . . 5 ((𝜑𝑛𝐼) → 𝐴 ∈ (Base‘𝐺))
81, 2mndidcl 18654 . . . . . . 7 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
93, 8syl 17 . . . . . 6 (𝜑0 ∈ (Base‘𝐺))
109adantr 480 . . . . 5 ((𝜑𝑛𝐼) → 0 ∈ (Base‘𝐺))
117, 10ifcld 4522 . . . 4 ((𝜑𝑛𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (Base‘𝐺))
12 gsummpt1n0.f . . . 4 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
1311, 12fmptd 7047 . . 3 (𝜑𝐹:𝐼⟶(Base‘𝐺))
1412oveq1i 7356 . . . 4 (𝐹 supp 0 ) = ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 )
15 eldifsni 4742 . . . . . . 7 (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛𝑋)
1615adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛𝑋)
17 ifnefalse 4487 . . . . . 6 (𝑛𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
1816, 17syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
1918, 4suppss2 8130 . . . 4 (𝜑 → ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋})
2014, 19eqsstrid 3973 . . 3 (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
211, 2, 3, 4, 5, 13, 20gsumpt 19872 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))
22 nfcv 2894 . . . . 5 𝑦if(𝑛 = 𝑋, 𝐴, 0 )
23 nfv 1915 . . . . . 6 𝑛 𝑦 = 𝑋
24 nfcsb1v 3874 . . . . . 6 𝑛𝑦 / 𝑛𝐴
25 nfcv 2894 . . . . . 6 𝑛 0
2623, 24, 25nfif 4506 . . . . 5 𝑛if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 )
27 eqeq1 2735 . . . . . 6 (𝑛 = 𝑦 → (𝑛 = 𝑋𝑦 = 𝑋))
28 csbeq1a 3864 . . . . . 6 (𝑛 = 𝑦𝐴 = 𝑦 / 𝑛𝐴)
2927, 28ifbieq1d 4500 . . . . 5 (𝑛 = 𝑦 → if(𝑛 = 𝑋, 𝐴, 0 ) = if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3022, 26, 29cbvmpt 5193 . . . 4 (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3112, 30eqtri 2754 . . 3 𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
32 iftrue 4481 . . . 4 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ) = 𝑦 / 𝑛𝐴)
33 csbeq1 3853 . . . 4 (𝑦 = 𝑋𝑦 / 𝑛𝐴 = 𝑋 / 𝑛𝐴)
3432, 33eqtrd 2766 . . 3 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ) = 𝑋 / 𝑛𝐴)
35 rspcsbela 4388 . . . 4 ((𝑋𝐼 ∧ ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺)) → 𝑋 / 𝑛𝐴 ∈ (Base‘𝐺))
365, 6, 35syl2anc 584 . . 3 (𝜑𝑋 / 𝑛𝐴 ∈ (Base‘𝐺))
3731, 34, 5, 36fvmptd3 6952 . 2 (𝜑 → (𝐹𝑋) = 𝑋 / 𝑛𝐴)
3821, 37eqtrd 2766 1 (𝜑 → (𝐺 Σg 𝐹) = 𝑋 / 𝑛𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  csb 3850  cdif 3899  ifcif 4475  {csn 4576  cmpt 5172  cfv 6481  (class class class)co 7346   supp csupp 8090  Basecbs 17117  0gc0g 17340   Σg cgsu 17341  Mndcmnd 18639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-0g 17342  df-gsum 17343  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692
This theorem is referenced by:  gsummptif1n0  19876  gsummoncoe1  22221  scmatscm  22426  idpm2idmp  22714  mp2pm2mplem4  22722  monmat2matmon  22737
  Copyright terms: Public domain W3C validator