MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummpt1n0 Structured version   Visualization version   GIF version

Theorem gsummpt1n0 18841
Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 18842. (Contributed by AV, 11-Oct-2019.)
Hypotheses
Ref Expression
gsummpt1n0.0 0 = (0g𝐺)
gsummpt1n0.g (𝜑𝐺 ∈ Mnd)
gsummpt1n0.i (𝜑𝐼𝑊)
gsummpt1n0.x (𝜑𝑋𝐼)
gsummpt1n0.f 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
gsummpt1n0.a (𝜑 → ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺))
Assertion
Ref Expression
gsummpt1n0 (𝜑 → (𝐺 Σg 𝐹) = 𝑋 / 𝑛𝐴)
Distinct variable groups:   𝑛,𝐺   𝑛,𝐼   𝑛,𝑋   𝜑,𝑛   0 ,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐹(𝑛)   𝑊(𝑛)

Proof of Theorem gsummpt1n0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 gsummpt1n0.0 . . 3 0 = (0g𝐺)
3 gsummpt1n0.g . . 3 (𝜑𝐺 ∈ Mnd)
4 gsummpt1n0.i . . 3 (𝜑𝐼𝑊)
5 gsummpt1n0.x . . 3 (𝜑𝑋𝐼)
6 gsummpt1n0.a . . . . . 6 (𝜑 → ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺))
76r19.21bi 3158 . . . . 5 ((𝜑𝑛𝐼) → 𝐴 ∈ (Base‘𝐺))
81, 2mndidcl 17779 . . . . . . 7 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
93, 8syl 17 . . . . . 6 (𝜑0 ∈ (Base‘𝐺))
109adantr 473 . . . . 5 ((𝜑𝑛𝐼) → 0 ∈ (Base‘𝐺))
117, 10ifcld 4396 . . . 4 ((𝜑𝑛𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (Base‘𝐺))
12 gsummpt1n0.f . . . 4 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
1311, 12fmptd 6703 . . 3 (𝜑𝐹:𝐼⟶(Base‘𝐺))
1412oveq1i 6988 . . . 4 (𝐹 supp 0 ) = ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 )
15 eldifsni 4597 . . . . . . 7 (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛𝑋)
1615adantl 474 . . . . . 6 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛𝑋)
17 ifnefalse 4363 . . . . . 6 (𝑛𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
1816, 17syl 17 . . . . 5 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
1918, 4suppss2 7669 . . . 4 (𝜑 → ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋})
2014, 19syl5eqss 3907 . . 3 (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
211, 2, 3, 4, 5, 13, 20gsumpt 18838 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))
22 nfcv 2932 . . . . 5 𝑦if(𝑛 = 𝑋, 𝐴, 0 )
23 nfv 1873 . . . . . 6 𝑛 𝑦 = 𝑋
24 nfcsb1v 3806 . . . . . 6 𝑛𝑦 / 𝑛𝐴
25 nfcv 2932 . . . . . 6 𝑛 0
2623, 24, 25nfif 4380 . . . . 5 𝑛if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 )
27 eqeq1 2782 . . . . . 6 (𝑛 = 𝑦 → (𝑛 = 𝑋𝑦 = 𝑋))
28 csbeq1a 3797 . . . . . 6 (𝑛 = 𝑦𝐴 = 𝑦 / 𝑛𝐴)
2927, 28ifbieq1d 4374 . . . . 5 (𝑛 = 𝑦 → if(𝑛 = 𝑋, 𝐴, 0 ) = if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3022, 26, 29cbvmpt 5028 . . . 4 (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
3112, 30eqtri 2802 . . 3 𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ))
32 iftrue 4357 . . . 4 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ) = 𝑦 / 𝑛𝐴)
33 csbeq1 3791 . . . 4 (𝑦 = 𝑋𝑦 / 𝑛𝐴 = 𝑋 / 𝑛𝐴)
3432, 33eqtrd 2814 . . 3 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 𝑦 / 𝑛𝐴, 0 ) = 𝑋 / 𝑛𝐴)
35 rspcsbela 4272 . . . 4 ((𝑋𝐼 ∧ ∀𝑛𝐼 𝐴 ∈ (Base‘𝐺)) → 𝑋 / 𝑛𝐴 ∈ (Base‘𝐺))
365, 6, 35syl2anc 576 . . 3 (𝜑𝑋 / 𝑛𝐴 ∈ (Base‘𝐺))
3731, 34, 5, 36fvmptd3 6619 . 2 (𝜑 → (𝐹𝑋) = 𝑋 / 𝑛𝐴)
3821, 37eqtrd 2814 1 (𝜑 → (𝐺 Σg 𝐹) = 𝑋 / 𝑛𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2967  wral 3088  csb 3788  cdif 3828  ifcif 4351  {csn 4442  cmpt 5009  cfv 6190  (class class class)co 6978   supp csupp 7635  Basecbs 16342  0gc0g 16572   Σg cgsu 16573  Mndcmnd 17765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-oi 8771  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-n0 11711  df-z 11797  df-uz 12062  df-fz 12712  df-fzo 12853  df-seq 13188  df-hash 13509  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-0g 16574  df-gsum 16575  df-mre 16718  df-mrc 16719  df-acs 16721  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-submnd 17807  df-mulg 18015  df-cntz 18221  df-cmn 18671
This theorem is referenced by:  gsummptif1n0  18842  gsummoncoe1  20178  scmatscm  20829  idpm2idmp  21116  mp2pm2mplem4  21124  monmat2matmon  21139
  Copyright terms: Public domain W3C validator