![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsummmodsndifre | Structured version Visualization version GIF version |
Description: A finite sum of summands modulo a positive number with one of its summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
Ref | Expression |
---|---|
fsummmodsndifre | ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2901 | . . 3 ⊢ Ⅎ𝑥(𝐵 mod 𝑁) | |
2 | nfcsb1v 3917 | . . 3 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) | |
3 | csbeq1a 3906 | . . 3 ⊢ (𝑘 = 𝑥 → (𝐵 mod 𝑁) = ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁)) | |
4 | 1, 2, 3 | cbvsumi 15647 | . 2 ⊢ Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) = Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) |
5 | diffi 9181 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin) | |
6 | 5 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝐴 ∖ {𝑋}) ∈ Fin) |
7 | eldifi 4125 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∖ {𝑋}) → 𝑥 ∈ 𝐴) | |
8 | rspcsbela 4434 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) | |
9 | 7, 8 | sylan 578 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝑋}) ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) |
10 | 9 | expcom 412 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∖ {𝑋}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
11 | 10 | 3ad2ant3 1133 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∖ {𝑋}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
12 | 11 | imp 405 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∖ {𝑋})) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) |
13 | vex 3476 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
14 | csbov1g 7456 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) = (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) = (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) |
16 | zre 12566 | . . . . . . . . . 10 ⊢ (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℝ) | |
17 | 16 | adantl 480 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℝ) |
18 | nnrp 12989 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
19 | 18 | adantr 479 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → 𝑁 ∈ ℝ+) |
20 | 17, 19 | modcld 13844 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) ∈ ℝ) |
21 | 15, 20 | eqeltrid 2835 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ) |
22 | 21 | ex 411 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ)) |
23 | 22 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ)) |
24 | 23 | adantr 479 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∖ {𝑋})) → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ)) |
25 | 12, 24 | mpd 15 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∖ {𝑋})) → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ) |
26 | 6, 25 | fsumrecl 15684 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ) |
27 | 4, 26 | eqeltrid 2835 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 Vcvv 3472 ⦋csb 3892 ∖ cdif 3944 {csn 4627 (class class class)co 7411 Fincfn 8941 ℝcr 11111 ℕcn 12216 ℤcz 12562 ℝ+crp 12978 mod cmo 13838 Σcsu 15636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-fz 13489 df-fzo 13632 df-fl 13761 df-mod 13839 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-sum 15637 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |