![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsummmodsndifre | Structured version Visualization version GIF version |
Description: A finite sum of summands modulo a positive number with one of its summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
Ref | Expression |
---|---|
fsummmodsndifre | ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑥(𝐵 mod 𝑁) | |
2 | nfcsb1v 3918 | . . 3 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) | |
3 | csbeq1a 3907 | . . 3 ⊢ (𝑘 = 𝑥 → (𝐵 mod 𝑁) = ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁)) | |
4 | 1, 2, 3 | cbvsumi 15695 | . 2 ⊢ Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) = Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) |
5 | diffi 9205 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin) | |
6 | 5 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝐴 ∖ {𝑋}) ∈ Fin) |
7 | eldifi 4125 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∖ {𝑋}) → 𝑥 ∈ 𝐴) | |
8 | rspcsbela 4434 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) | |
9 | 7, 8 | sylan 578 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝑋}) ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) |
10 | 9 | expcom 412 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∖ {𝑋}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
11 | 10 | 3ad2ant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∖ {𝑋}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
12 | 11 | imp 405 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∖ {𝑋})) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) |
13 | vex 3468 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
14 | csbov1g 7461 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) = (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) = (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) |
16 | zre 12607 | . . . . . . . . . 10 ⊢ (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℝ) | |
17 | 16 | adantl 480 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℝ) |
18 | nnrp 13032 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
19 | 18 | adantr 479 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → 𝑁 ∈ ℝ+) |
20 | 17, 19 | modcld 13888 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) ∈ ℝ) |
21 | 15, 20 | eqeltrid 2830 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ) |
22 | 21 | ex 411 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ)) |
23 | 22 | 3ad2ant2 1131 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ)) |
24 | 23 | adantr 479 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∖ {𝑋})) → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ)) |
25 | 12, 24 | mpd 15 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∖ {𝑋})) → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ) |
26 | 6, 25 | fsumrecl 15732 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ) |
27 | 4, 26 | eqeltrid 2830 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 Vcvv 3464 ⦋csb 3893 ∖ cdif 3945 {csn 4625 (class class class)co 7415 Fincfn 8965 ℝcr 11147 ℕcn 12257 ℤcz 12603 ℝ+crp 13021 mod cmo 13882 Σcsu 15684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-inf2 9676 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-int 4949 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-isom 6554 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8966 df-dom 8967 df-sdom 8968 df-fin 8969 df-sup 9477 df-inf 9478 df-oi 9545 df-card 9974 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12258 df-2 12320 df-3 12321 df-n0 12518 df-z 12604 df-uz 12868 df-rp 13022 df-fz 13532 df-fzo 13675 df-fl 13805 df-mod 13883 df-seq 14015 df-exp 14075 df-hash 14342 df-cj 15098 df-re 15099 df-im 15100 df-sqrt 15234 df-abs 15235 df-clim 15484 df-sum 15685 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |