![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsummmodsndifre | Structured version Visualization version GIF version |
Description: A finite sum of summands modulo a positive number with one of its summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
Ref | Expression |
---|---|
fsummmodsndifre | ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2934 | . . 3 ⊢ Ⅎ𝑥(𝐵 mod 𝑁) | |
2 | nfcsb1v 3767 | . . 3 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) | |
3 | csbeq1a 3760 | . . 3 ⊢ (𝑘 = 𝑥 → (𝐵 mod 𝑁) = ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁)) | |
4 | 1, 2, 3 | cbvsumi 14839 | . 2 ⊢ Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) = Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) |
5 | diffi 8482 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin) | |
6 | 5 | 3ad2ant1 1124 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝐴 ∖ {𝑋}) ∈ Fin) |
7 | eldifi 3955 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∖ {𝑋}) → 𝑥 ∈ 𝐴) | |
8 | rspcsbela 4232 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) | |
9 | 7, 8 | sylan 575 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ∖ {𝑋}) ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) |
10 | 9 | expcom 404 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∖ {𝑋}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
11 | 10 | 3ad2ant3 1126 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∖ {𝑋}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
12 | 11 | imp 397 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∖ {𝑋})) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) |
13 | vex 3401 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
14 | csbov1g 6968 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) = (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) = (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) |
16 | zre 11736 | . . . . . . . . . 10 ⊢ (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℝ) | |
17 | 16 | adantl 475 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℝ) |
18 | nnrp 12154 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
19 | 18 | adantr 474 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → 𝑁 ∈ ℝ+) |
20 | 17, 19 | modcld 12997 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) ∈ ℝ) |
21 | 15, 20 | syl5eqel 2863 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ) |
22 | 21 | ex 403 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ)) |
23 | 22 | 3ad2ant2 1125 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ)) |
24 | 23 | adantr 474 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∖ {𝑋})) → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ)) |
25 | 12, 24 | mpd 15 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∖ {𝑋})) → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ) |
26 | 6, 25 | fsumrecl 14876 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℝ) |
27 | 4, 26 | syl5eqel 2863 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∖ {𝑋})(𝐵 mod 𝑁) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 Vcvv 3398 ⦋csb 3751 ∖ cdif 3789 {csn 4398 (class class class)co 6924 Fincfn 8243 ℝcr 10273 ℕcn 11378 ℤcz 11732 ℝ+crp 12141 mod cmo 12991 Σcsu 14828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-n0 11647 df-z 11733 df-uz 11997 df-rp 12142 df-fz 12648 df-fzo 12789 df-fl 12916 df-mod 12992 df-seq 13124 df-exp 13183 df-hash 13440 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-clim 14631 df-sum 14829 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |