![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slwispgp | Structured version Visualization version GIF version |
Description: Defining property of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
slwispgp.1 | ⊢ 𝑆 = (𝐺 ↾s 𝐾) |
Ref | Expression |
---|---|
slwispgp | ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isslw 19650 | . . 3 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) | |
2 | 1 | simp3bi 1147 | . 2 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)) |
3 | sseq2 4035 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝐻 ⊆ 𝑘 ↔ 𝐻 ⊆ 𝐾)) | |
4 | oveq2 7456 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝐺 ↾s 𝑘) = (𝐺 ↾s 𝐾)) | |
5 | slwispgp.1 | . . . . . . 7 ⊢ 𝑆 = (𝐺 ↾s 𝐾) | |
6 | 4, 5 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝐺 ↾s 𝑘) = 𝑆) |
7 | 6 | breq2d 5178 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑃 pGrp (𝐺 ↾s 𝑘) ↔ 𝑃 pGrp 𝑆)) |
8 | 3, 7 | anbi12d 631 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ (𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆))) |
9 | eqeq2 2752 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝐻 = 𝑘 ↔ 𝐻 = 𝐾)) | |
10 | 8, 9 | bibi12d 345 | . . 3 ⊢ (𝑘 = 𝐾 → (((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘) ↔ ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))) |
11 | 10 | rspccva 3634 | . 2 ⊢ ((∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
12 | 2, 11 | sylan 579 | 1 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℙcprime 16718 ↾s cress 17287 SubGrpcsubg 19160 pGrp cpgp 19568 pSyl cslw 19569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-subg 19163 df-slw 19573 |
This theorem is referenced by: slwpss 19654 slwpgp 19655 subgslw 19658 slwhash 19666 |
Copyright terms: Public domain | W3C validator |