|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > slwispgp | Structured version Visualization version GIF version | ||
| Description: Defining property of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| slwispgp.1 | ⊢ 𝑆 = (𝐺 ↾s 𝐾) | 
| Ref | Expression | 
|---|---|
| slwispgp | ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isslw 19627 | . . 3 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) | |
| 2 | 1 | simp3bi 1147 | . 2 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)) | 
| 3 | sseq2 4009 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝐻 ⊆ 𝑘 ↔ 𝐻 ⊆ 𝐾)) | |
| 4 | oveq2 7440 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝐺 ↾s 𝑘) = (𝐺 ↾s 𝐾)) | |
| 5 | slwispgp.1 | . . . . . . 7 ⊢ 𝑆 = (𝐺 ↾s 𝐾) | |
| 6 | 4, 5 | eqtr4di 2794 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝐺 ↾s 𝑘) = 𝑆) | 
| 7 | 6 | breq2d 5154 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑃 pGrp (𝐺 ↾s 𝑘) ↔ 𝑃 pGrp 𝑆)) | 
| 8 | 3, 7 | anbi12d 632 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ (𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆))) | 
| 9 | eqeq2 2748 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝐻 = 𝑘 ↔ 𝐻 = 𝐾)) | |
| 10 | 8, 9 | bibi12d 345 | . . 3 ⊢ (𝑘 = 𝐾 → (((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘) ↔ ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))) | 
| 11 | 10 | rspccva 3620 | . 2 ⊢ ((∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) | 
| 12 | 2, 11 | sylan 580 | 1 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ⊆ wss 3950 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℙcprime 16709 ↾s cress 17275 SubGrpcsubg 19139 pGrp cpgp 19545 pSyl cslw 19546 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-subg 19142 df-slw 19550 | 
| This theorem is referenced by: slwpss 19631 slwpgp 19632 subgslw 19635 slwhash 19643 | 
| Copyright terms: Public domain | W3C validator |