MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwispgp Structured version   Visualization version   GIF version

Theorem slwispgp 19523
Description: Defining property of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwispgp.1 𝑆 = (𝐺s 𝐾)
Assertion
Ref Expression
slwispgp ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))

Proof of Theorem slwispgp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 isslw 19520 . . 3 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
21simp3bi 1147 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
3 sseq2 3956 . . . . 5 (𝑘 = 𝐾 → (𝐻𝑘𝐻𝐾))
4 oveq2 7354 . . . . . . 7 (𝑘 = 𝐾 → (𝐺s 𝑘) = (𝐺s 𝐾))
5 slwispgp.1 . . . . . . 7 𝑆 = (𝐺s 𝐾)
64, 5eqtr4di 2784 . . . . . 6 (𝑘 = 𝐾 → (𝐺s 𝑘) = 𝑆)
76breq2d 5101 . . . . 5 (𝑘 = 𝐾 → (𝑃 pGrp (𝐺s 𝑘) ↔ 𝑃 pGrp 𝑆))
83, 7anbi12d 632 . . . 4 (𝑘 = 𝐾 → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ (𝐻𝐾𝑃 pGrp 𝑆)))
9 eqeq2 2743 . . . 4 (𝑘 = 𝐾 → (𝐻 = 𝑘𝐻 = 𝐾))
108, 9bibi12d 345 . . 3 (𝑘 = 𝐾 → (((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘) ↔ ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)))
1110rspccva 3571 . 2 ((∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))
122, 11sylan 580 1 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897   class class class wbr 5089  cfv 6481  (class class class)co 7346  cprime 16582  s cress 17141  SubGrpcsubg 19033   pGrp cpgp 19438   pSyl cslw 19439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-subg 19036  df-slw 19443
This theorem is referenced by:  slwpss  19524  slwpgp  19525  subgslw  19528  slwhash  19536
  Copyright terms: Public domain W3C validator