Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > slwispgp | Structured version Visualization version GIF version |
Description: Defining property of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
slwispgp.1 | ⊢ 𝑆 = (𝐺 ↾s 𝐾) |
Ref | Expression |
---|---|
slwispgp | ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isslw 19309 | . . 3 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) | |
2 | 1 | simp3bi 1146 | . 2 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)) |
3 | sseq2 3958 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝐻 ⊆ 𝑘 ↔ 𝐻 ⊆ 𝐾)) | |
4 | oveq2 7345 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝐺 ↾s 𝑘) = (𝐺 ↾s 𝐾)) | |
5 | slwispgp.1 | . . . . . . 7 ⊢ 𝑆 = (𝐺 ↾s 𝐾) | |
6 | 4, 5 | eqtr4di 2794 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝐺 ↾s 𝑘) = 𝑆) |
7 | 6 | breq2d 5104 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑃 pGrp (𝐺 ↾s 𝑘) ↔ 𝑃 pGrp 𝑆)) |
8 | 3, 7 | anbi12d 631 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ (𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆))) |
9 | eqeq2 2748 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝐻 = 𝑘 ↔ 𝐻 = 𝐾)) | |
10 | 8, 9 | bibi12d 345 | . . 3 ⊢ (𝑘 = 𝐾 → (((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘) ↔ ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))) |
11 | 10 | rspccva 3569 | . 2 ⊢ ((∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
12 | 2, 11 | sylan 580 | 1 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ⊆ wss 3898 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 ℙcprime 16473 ↾s cress 17038 SubGrpcsubg 18845 pGrp cpgp 19230 pSyl cslw 19231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-subg 18848 df-slw 19235 |
This theorem is referenced by: slwpss 19313 slwpgp 19314 subgslw 19317 slwhash 19325 |
Copyright terms: Public domain | W3C validator |