| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slwispgp | Structured version Visualization version GIF version | ||
| Description: Defining property of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| slwispgp.1 | ⊢ 𝑆 = (𝐺 ↾s 𝐾) |
| Ref | Expression |
|---|---|
| slwispgp | ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isslw 19520 | . . 3 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) | |
| 2 | 1 | simp3bi 1147 | . 2 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)) |
| 3 | sseq2 3956 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝐻 ⊆ 𝑘 ↔ 𝐻 ⊆ 𝐾)) | |
| 4 | oveq2 7354 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝐺 ↾s 𝑘) = (𝐺 ↾s 𝐾)) | |
| 5 | slwispgp.1 | . . . . . . 7 ⊢ 𝑆 = (𝐺 ↾s 𝐾) | |
| 6 | 4, 5 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝐺 ↾s 𝑘) = 𝑆) |
| 7 | 6 | breq2d 5101 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑃 pGrp (𝐺 ↾s 𝑘) ↔ 𝑃 pGrp 𝑆)) |
| 8 | 3, 7 | anbi12d 632 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ (𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆))) |
| 9 | eqeq2 2743 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝐻 = 𝑘 ↔ 𝐻 = 𝐾)) | |
| 10 | 8, 9 | bibi12d 345 | . . 3 ⊢ (𝑘 = 𝐾 → (((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘) ↔ ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))) |
| 11 | 10 | rspccva 3571 | . 2 ⊢ ((∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
| 12 | 2, 11 | sylan 580 | 1 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℙcprime 16582 ↾s cress 17141 SubGrpcsubg 19033 pGrp cpgp 19438 pSyl cslw 19439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-subg 19036 df-slw 19443 |
| This theorem is referenced by: slwpss 19524 slwpgp 19525 subgslw 19528 slwhash 19536 |
| Copyright terms: Public domain | W3C validator |