![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slwispgp | Structured version Visualization version GIF version |
Description: Defining property of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
slwispgp.1 | ⊢ 𝑆 = (𝐺 ↾s 𝐾) |
Ref | Expression |
---|---|
slwispgp | ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isslw 19641 | . . 3 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘))) | |
2 | 1 | simp3bi 1146 | . 2 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘)) |
3 | sseq2 4022 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝐻 ⊆ 𝑘 ↔ 𝐻 ⊆ 𝐾)) | |
4 | oveq2 7439 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝐺 ↾s 𝑘) = (𝐺 ↾s 𝐾)) | |
5 | slwispgp.1 | . . . . . . 7 ⊢ 𝑆 = (𝐺 ↾s 𝐾) | |
6 | 4, 5 | eqtr4di 2793 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝐺 ↾s 𝑘) = 𝑆) |
7 | 6 | breq2d 5160 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑃 pGrp (𝐺 ↾s 𝑘) ↔ 𝑃 pGrp 𝑆)) |
8 | 3, 7 | anbi12d 632 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ (𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆))) |
9 | eqeq2 2747 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝐻 = 𝑘 ↔ 𝐻 = 𝐾)) | |
10 | 8, 9 | bibi12d 345 | . . 3 ⊢ (𝑘 = 𝐾 → (((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘) ↔ ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))) |
11 | 10 | rspccva 3621 | . 2 ⊢ ((∀𝑘 ∈ (SubGrp‘𝐺)((𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp (𝐺 ↾s 𝑘)) ↔ 𝐻 = 𝑘) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
12 | 2, 11 | sylan 580 | 1 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℙcprime 16705 ↾s cress 17274 SubGrpcsubg 19151 pGrp cpgp 19559 pSyl cslw 19560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-subg 19154 df-slw 19564 |
This theorem is referenced by: slwpss 19645 slwpgp 19646 subgslw 19649 slwhash 19657 |
Copyright terms: Public domain | W3C validator |