MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwispgp Structured version   Visualization version   GIF version

Theorem slwispgp 19517
Description: Defining property of a Sylow 𝑃-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwispgp.1 𝑆 = (𝐺s 𝐾)
Assertion
Ref Expression
slwispgp ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))

Proof of Theorem slwispgp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 isslw 19514 . . 3 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
21simp3bi 1147 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
3 sseq2 3970 . . . . 5 (𝑘 = 𝐾 → (𝐻𝑘𝐻𝐾))
4 oveq2 7377 . . . . . . 7 (𝑘 = 𝐾 → (𝐺s 𝑘) = (𝐺s 𝐾))
5 slwispgp.1 . . . . . . 7 𝑆 = (𝐺s 𝐾)
64, 5eqtr4di 2782 . . . . . 6 (𝑘 = 𝐾 → (𝐺s 𝑘) = 𝑆)
76breq2d 5114 . . . . 5 (𝑘 = 𝐾 → (𝑃 pGrp (𝐺s 𝑘) ↔ 𝑃 pGrp 𝑆))
83, 7anbi12d 632 . . . 4 (𝑘 = 𝐾 → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ (𝐻𝐾𝑃 pGrp 𝑆)))
9 eqeq2 2741 . . . 4 (𝑘 = 𝐾 → (𝐻 = 𝑘𝐻 = 𝐾))
108, 9bibi12d 345 . . 3 (𝑘 = 𝐾 → (((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘) ↔ ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾)))
1110rspccva 3584 . 2 ((∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))
122, 11sylan 580 1 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ((𝐻𝐾𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  cprime 16617  s cress 17176  SubGrpcsubg 19028   pGrp cpgp 19432   pSyl cslw 19433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-subg 19031  df-slw 19437
This theorem is referenced by:  slwpss  19518  slwpgp  19519  subgslw  19522  slwhash  19530
  Copyright terms: Public domain W3C validator