MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwpgp Structured version   Visualization version   GIF version

Theorem slwpgp 19510
Description: A Sylow 𝑃-subgroup is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwpgp.1 𝑆 = (𝐺s 𝐻)
Assertion
Ref Expression
slwpgp (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆)

Proof of Theorem slwpgp
StepHypRef Expression
1 eqid 2729 . . 3 𝐻 = 𝐻
2 slwsubg 19507 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
3 slwpgp.1 . . . . 5 𝑆 = (𝐺s 𝐻)
43slwispgp 19508 . . . 4 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((𝐻𝐻𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻))
52, 4mpdan 687 . . 3 (𝐻 ∈ (𝑃 pSyl 𝐺) → ((𝐻𝐻𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻))
61, 5mpbiri 258 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝐻𝐻𝑃 pGrp 𝑆))
76simprd 495 1 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  s cress 17159  SubGrpcsubg 19017   pGrp cpgp 19423   pSyl cslw 19424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-subg 19020  df-slw 19428
This theorem is referenced by:  slwhash  19521  sylow2  19523  sylow3lem6  19529
  Copyright terms: Public domain W3C validator