MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwpgp Structured version   Visualization version   GIF version

Theorem slwpgp 19522
Description: A Sylow 𝑃-subgroup is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwpgp.1 𝑆 = (𝐺s 𝐻)
Assertion
Ref Expression
slwpgp (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆)

Proof of Theorem slwpgp
StepHypRef Expression
1 eqid 2730 . . 3 𝐻 = 𝐻
2 slwsubg 19519 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
3 slwpgp.1 . . . . 5 𝑆 = (𝐺s 𝐻)
43slwispgp 19520 . . . 4 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((𝐻𝐻𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻))
52, 4mpdan 683 . . 3 (𝐻 ∈ (𝑃 pSyl 𝐺) → ((𝐻𝐻𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻))
61, 5mpbiri 257 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝐻𝐻𝑃 pGrp 𝑆))
76simprd 494 1 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wss 3947   class class class wbr 5147  cfv 6542  (class class class)co 7411  s cress 17177  SubGrpcsubg 19036   pGrp cpgp 19435   pSyl cslw 19436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-subg 19039  df-slw 19440
This theorem is referenced by:  slwhash  19533  sylow2  19535  sylow3lem6  19541
  Copyright terms: Public domain W3C validator