| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slwpgp | Structured version Visualization version GIF version | ||
| Description: A Sylow 𝑃-subgroup is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| slwpgp.1 | ⊢ 𝑆 = (𝐺 ↾s 𝐻) |
| Ref | Expression |
|---|---|
| slwpgp | ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ 𝐻 = 𝐻 | |
| 2 | slwsubg 19524 | . . . 4 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺)) | |
| 3 | slwpgp.1 | . . . . 5 ⊢ 𝑆 = (𝐺 ↾s 𝐻) | |
| 4 | 3 | slwispgp 19525 | . . . 4 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻)) |
| 5 | 2, 4 | mpdan 687 | . . 3 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → ((𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻)) |
| 6 | 1, 5 | mpbiri 258 | . 2 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆)) |
| 7 | 6 | simprd 495 | 1 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ↾s cress 17143 SubGrpcsubg 19035 pGrp cpgp 19440 pSyl cslw 19441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-subg 19038 df-slw 19445 |
| This theorem is referenced by: slwhash 19538 sylow2 19540 sylow3lem6 19546 |
| Copyright terms: Public domain | W3C validator |