MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slwpgp Structured version   Visualization version   GIF version

Theorem slwpgp 19523
Description: A Sylow 𝑃-subgroup is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
slwpgp.1 𝑆 = (𝐺s 𝐻)
Assertion
Ref Expression
slwpgp (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆)

Proof of Theorem slwpgp
StepHypRef Expression
1 eqid 2731 . . 3 𝐻 = 𝐻
2 slwsubg 19520 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
3 slwpgp.1 . . . . 5 𝑆 = (𝐺s 𝐻)
43slwispgp 19521 . . . 4 ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((𝐻𝐻𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻))
52, 4mpdan 687 . . 3 (𝐻 ∈ (𝑃 pSyl 𝐺) → ((𝐻𝐻𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻))
61, 5mpbiri 258 . 2 (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝐻𝐻𝑃 pGrp 𝑆))
76simprd 495 1 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3902   class class class wbr 5091  cfv 6481  (class class class)co 7346  s cress 17138  SubGrpcsubg 19030   pGrp cpgp 19436   pSyl cslw 19437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-subg 19033  df-slw 19441
This theorem is referenced by:  slwhash  19534  sylow2  19536  sylow3lem6  19542
  Copyright terms: Public domain W3C validator