Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > slwpgp | Structured version Visualization version GIF version |
Description: A Sylow 𝑃-subgroup is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
slwpgp.1 | ⊢ 𝑆 = (𝐺 ↾s 𝐻) |
Ref | Expression |
---|---|
slwpgp | ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ 𝐻 = 𝐻 | |
2 | slwsubg 19130 | . . . 4 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺)) | |
3 | slwpgp.1 | . . . . 5 ⊢ 𝑆 = (𝐺 ↾s 𝐻) | |
4 | 3 | slwispgp 19131 | . . . 4 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻)) |
5 | 2, 4 | mpdan 683 | . . 3 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → ((𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻)) |
6 | 1, 5 | mpbiri 257 | . 2 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆)) |
7 | 6 | simprd 495 | 1 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ↾s cress 16867 SubGrpcsubg 18664 pGrp cpgp 19049 pSyl cslw 19050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-subg 18667 df-slw 19054 |
This theorem is referenced by: slwhash 19144 sylow2 19146 sylow3lem6 19152 |
Copyright terms: Public domain | W3C validator |