Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > slwpgp | Structured version Visualization version GIF version |
Description: A Sylow 𝑃-subgroup is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
slwpgp.1 | ⊢ 𝑆 = (𝐺 ↾s 𝐻) |
Ref | Expression |
---|---|
slwpgp | ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . 3 ⊢ 𝐻 = 𝐻 | |
2 | slwsubg 18803 | . . . 4 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺)) | |
3 | slwpgp.1 | . . . . 5 ⊢ 𝑆 = (𝐺 ↾s 𝐻) | |
4 | 3 | slwispgp 18804 | . . . 4 ⊢ ((𝐻 ∈ (𝑃 pSyl 𝐺) ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻)) |
5 | 2, 4 | mpdan 687 | . . 3 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → ((𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆) ↔ 𝐻 = 𝐻)) |
6 | 1, 5 | mpbiri 261 | . 2 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → (𝐻 ⊆ 𝐻 ∧ 𝑃 pGrp 𝑆)) |
7 | 6 | simprd 500 | 1 ⊢ (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ⊆ wss 3859 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 ↾s cress 16543 SubGrpcsubg 18341 pGrp cpgp 18722 pSyl cslw 18723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-subg 18344 df-slw 18727 |
This theorem is referenced by: slwhash 18817 sylow2 18819 sylow3lem6 18825 |
Copyright terms: Public domain | W3C validator |