MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbasOLD Structured version   Visualization version   GIF version

Theorem ressbasOLD 17294
Description: Obsolete proof of ressbas 17293 as of 7-Nov-2024. Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbasOLD (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))

Proof of Theorem ressbasOLD
StepHypRef Expression
1 ressbas.b . . . . 5 𝐵 = (Base‘𝑊)
2 simp1 1136 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝐵𝐴)
3 sseqin2 4244 . . . . . 6 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
42, 3sylib 218 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = 𝐵)
5 ressbas.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
65, 1ressid2 17291 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
76fveq2d 6924 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘𝑊))
81, 4, 73eqtr4a 2806 . . . 4 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
983expib 1122 . . 3 (𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
10 simp2 1137 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑊 ∈ V)
111fvexi 6934 . . . . . . 7 𝐵 ∈ V
1211inex2 5336 . . . . . 6 (𝐴𝐵) ∈ V
13 baseid 17261 . . . . . . 7 Base = Slot (Base‘ndx)
1413setsid 17255 . . . . . 6 ((𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1510, 12, 14sylancl 585 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
165, 1ressval2 17292 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
1716fveq2d 6924 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1815, 17eqtr4d 2783 . . . 4 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
19183expib 1122 . . 3 𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
209, 19pm2.61i 182 . 2 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
21 0fv 6964 . . . . 5 (∅‘(Base‘ndx)) = ∅
22 0ex 5325 . . . . . 6 ∅ ∈ V
2322, 13strfvn 17233 . . . . 5 (Base‘∅) = (∅‘(Base‘ndx))
24 in0 4418 . . . . 5 (𝐴 ∩ ∅) = ∅
2521, 23, 243eqtr4ri 2779 . . . 4 (𝐴 ∩ ∅) = (Base‘∅)
26 fvprc 6912 . . . . . 6 𝑊 ∈ V → (Base‘𝑊) = ∅)
271, 26eqtrid 2792 . . . . 5 𝑊 ∈ V → 𝐵 = ∅)
2827ineq2d 4241 . . . 4 𝑊 ∈ V → (𝐴𝐵) = (𝐴 ∩ ∅))
29 reldmress 17289 . . . . . . 7 Rel dom ↾s
3029ovprc1 7487 . . . . . 6 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
315, 30eqtrid 2792 . . . . 5 𝑊 ∈ V → 𝑅 = ∅)
3231fveq2d 6924 . . . 4 𝑊 ∈ V → (Base‘𝑅) = (Base‘∅))
3325, 28, 323eqtr4a 2806 . . 3 𝑊 ∈ V → (𝐴𝐵) = (Base‘𝑅))
3433adantr 480 . 2 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
3520, 34pm2.61ian 811 1 (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  wss 3976  c0 4352  cop 4654  cfv 6573  (class class class)co 7448   sSet csts 17210  ndxcnx 17240  Basecbs 17258  s cress 17287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator