Proof of Theorem ressbasOLD
Step | Hyp | Ref
| Expression |
1 | | ressbas.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑊) |
2 | | simp1 1135 |
. . . . . 6
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐵 ⊆ 𝐴) |
3 | | sseqin2 4149 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) |
4 | 2, 3 | sylib 217 |
. . . . 5
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = 𝐵) |
5 | | ressbas.r |
. . . . . . 7
⊢ 𝑅 = (𝑊 ↾s 𝐴) |
6 | 5, 1 | ressid2 16945 |
. . . . . 6
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
7 | 6 | fveq2d 6778 |
. . . . 5
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘𝑊)) |
8 | 1, 4, 7 | 3eqtr4a 2804 |
. . . 4
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
9 | 8 | 3expib 1121 |
. . 3
⊢ (𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
10 | | simp2 1136 |
. . . . . 6
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑊 ∈ V) |
11 | 1 | fvexi 6788 |
. . . . . . 7
⊢ 𝐵 ∈ V |
12 | 11 | inex2 5242 |
. . . . . 6
⊢ (𝐴 ∩ 𝐵) ∈ V |
13 | | baseid 16915 |
. . . . . . 7
⊢ Base =
Slot (Base‘ndx) |
14 | 13 | setsid 16909 |
. . . . . 6
⊢ ((𝑊 ∈ V ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
15 | 10, 12, 14 | sylancl 586 |
. . . . 5
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
16 | 5, 1 | ressval2 16946 |
. . . . . 6
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
17 | 16 | fveq2d 6778 |
. . . . 5
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
18 | 15, 17 | eqtr4d 2781 |
. . . 4
⊢ ((¬
𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
19 | 18 | 3expib 1121 |
. . 3
⊢ (¬
𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
20 | 9, 19 | pm2.61i 182 |
. 2
⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
21 | | 0fv 6813 |
. . . . 5
⊢
(∅‘(Base‘ndx)) = ∅ |
22 | | 0ex 5231 |
. . . . . 6
⊢ ∅
∈ V |
23 | 22, 13 | strfvn 16887 |
. . . . 5
⊢
(Base‘∅) = (∅‘(Base‘ndx)) |
24 | | in0 4325 |
. . . . 5
⊢ (𝐴 ∩ ∅) =
∅ |
25 | 21, 23, 24 | 3eqtr4ri 2777 |
. . . 4
⊢ (𝐴 ∩ ∅) =
(Base‘∅) |
26 | | fvprc 6766 |
. . . . . 6
⊢ (¬
𝑊 ∈ V →
(Base‘𝑊) =
∅) |
27 | 1, 26 | eqtrid 2790 |
. . . . 5
⊢ (¬
𝑊 ∈ V → 𝐵 = ∅) |
28 | 27 | ineq2d 4146 |
. . . 4
⊢ (¬
𝑊 ∈ V → (𝐴 ∩ 𝐵) = (𝐴 ∩ ∅)) |
29 | | reldmress 16943 |
. . . . . . 7
⊢ Rel dom
↾s |
30 | 29 | ovprc1 7314 |
. . . . . 6
⊢ (¬
𝑊 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
31 | 5, 30 | eqtrid 2790 |
. . . . 5
⊢ (¬
𝑊 ∈ V → 𝑅 = ∅) |
32 | 31 | fveq2d 6778 |
. . . 4
⊢ (¬
𝑊 ∈ V →
(Base‘𝑅) =
(Base‘∅)) |
33 | 25, 28, 32 | 3eqtr4a 2804 |
. . 3
⊢ (¬
𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
34 | 33 | adantr 481 |
. 2
⊢ ((¬
𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
35 | 20, 34 | pm2.61ian 809 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |