MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbasOLD Structured version   Visualization version   GIF version

Theorem ressbasOLD 17189
Description: Obsolete proof of ressbas 17188 as of 7-Nov-2024. Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (π‘Š β†Ύs 𝐴)
ressbas.b 𝐡 = (Baseβ€˜π‘Š)
Assertion
Ref Expression
ressbasOLD (𝐴 ∈ 𝑉 β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))

Proof of Theorem ressbasOLD
StepHypRef Expression
1 ressbas.b . . . . 5 𝐡 = (Baseβ€˜π‘Š)
2 simp1 1133 . . . . . 6 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝐡 βŠ† 𝐴)
3 sseqin2 4210 . . . . . 6 (𝐡 βŠ† 𝐴 ↔ (𝐴 ∩ 𝐡) = 𝐡)
42, 3sylib 217 . . . . 5 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = 𝐡)
5 ressbas.r . . . . . . 7 𝑅 = (π‘Š β†Ύs 𝐴)
65, 1ressid2 17186 . . . . . 6 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝑅 = π‘Š)
76fveq2d 6889 . . . . 5 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘Š))
81, 4, 73eqtr4a 2792 . . . 4 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
983expib 1119 . . 3 (𝐡 βŠ† 𝐴 β†’ ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…)))
10 simp2 1134 . . . . . 6 ((Β¬ 𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ π‘Š ∈ V)
111fvexi 6899 . . . . . . 7 𝐡 ∈ V
1211inex2 5311 . . . . . 6 (𝐴 ∩ 𝐡) ∈ V
13 baseid 17156 . . . . . . 7 Base = Slot (Baseβ€˜ndx)
1413setsid 17150 . . . . . 6 ((π‘Š ∈ V ∧ (𝐴 ∩ 𝐡) ∈ V) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜(π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
1510, 12, 14sylancl 585 . . . . 5 ((Β¬ 𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜(π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
165, 1ressval2 17187 . . . . . 6 ((Β¬ 𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝑅 = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩))
1716fveq2d 6889 . . . . 5 ((Β¬ 𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (Baseβ€˜π‘…) = (Baseβ€˜(π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
1815, 17eqtr4d 2769 . . . 4 ((Β¬ 𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
19183expib 1119 . . 3 (Β¬ 𝐡 βŠ† 𝐴 β†’ ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…)))
209, 19pm2.61i 182 . 2 ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
21 0fv 6929 . . . . 5 (βˆ…β€˜(Baseβ€˜ndx)) = βˆ…
22 0ex 5300 . . . . . 6 βˆ… ∈ V
2322, 13strfvn 17128 . . . . 5 (Baseβ€˜βˆ…) = (βˆ…β€˜(Baseβ€˜ndx))
24 in0 4386 . . . . 5 (𝐴 ∩ βˆ…) = βˆ…
2521, 23, 243eqtr4ri 2765 . . . 4 (𝐴 ∩ βˆ…) = (Baseβ€˜βˆ…)
26 fvprc 6877 . . . . . 6 (Β¬ π‘Š ∈ V β†’ (Baseβ€˜π‘Š) = βˆ…)
271, 26eqtrid 2778 . . . . 5 (Β¬ π‘Š ∈ V β†’ 𝐡 = βˆ…)
2827ineq2d 4207 . . . 4 (Β¬ π‘Š ∈ V β†’ (𝐴 ∩ 𝐡) = (𝐴 ∩ βˆ…))
29 reldmress 17184 . . . . . . 7 Rel dom β†Ύs
3029ovprc1 7444 . . . . . 6 (Β¬ π‘Š ∈ V β†’ (π‘Š β†Ύs 𝐴) = βˆ…)
315, 30eqtrid 2778 . . . . 5 (Β¬ π‘Š ∈ V β†’ 𝑅 = βˆ…)
3231fveq2d 6889 . . . 4 (Β¬ π‘Š ∈ V β†’ (Baseβ€˜π‘…) = (Baseβ€˜βˆ…))
3325, 28, 323eqtr4a 2792 . . 3 (Β¬ π‘Š ∈ V β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
3433adantr 480 . 2 ((Β¬ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
3520, 34pm2.61ian 809 1 (𝐴 ∈ 𝑉 β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3468   ∩ cin 3942   βŠ† wss 3943  βˆ…c0 4317  βŸ¨cop 4629  β€˜cfv 6537  (class class class)co 7405   sSet csts 17105  ndxcnx 17135  Basecbs 17153   β†Ύs cress 17182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-1cn 11170  ax-addcl 11172
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-nn 12217  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator