MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbasOLD Structured version   Visualization version   GIF version

Theorem ressbasOLD 17018
Description: Obsolete proof of ressbas 17017 as of 7-Nov-2024. Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbasOLD (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))

Proof of Theorem ressbasOLD
StepHypRef Expression
1 ressbas.b . . . . 5 𝐵 = (Base‘𝑊)
2 simp1 1135 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝐵𝐴)
3 sseqin2 4160 . . . . . 6 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
42, 3sylib 217 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = 𝐵)
5 ressbas.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
65, 1ressid2 17015 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
76fveq2d 6815 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘𝑊))
81, 4, 73eqtr4a 2803 . . . 4 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
983expib 1121 . . 3 (𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
10 simp2 1136 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑊 ∈ V)
111fvexi 6825 . . . . . . 7 𝐵 ∈ V
1211inex2 5257 . . . . . 6 (𝐴𝐵) ∈ V
13 baseid 16985 . . . . . . 7 Base = Slot (Base‘ndx)
1413setsid 16979 . . . . . 6 ((𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1510, 12, 14sylancl 586 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
165, 1ressval2 17016 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
1716fveq2d 6815 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1815, 17eqtr4d 2780 . . . 4 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
19183expib 1121 . . 3 𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
209, 19pm2.61i 182 . 2 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
21 0fv 6852 . . . . 5 (∅‘(Base‘ndx)) = ∅
22 0ex 5246 . . . . . 6 ∅ ∈ V
2322, 13strfvn 16957 . . . . 5 (Base‘∅) = (∅‘(Base‘ndx))
24 in0 4336 . . . . 5 (𝐴 ∩ ∅) = ∅
2521, 23, 243eqtr4ri 2776 . . . 4 (𝐴 ∩ ∅) = (Base‘∅)
26 fvprc 6803 . . . . . 6 𝑊 ∈ V → (Base‘𝑊) = ∅)
271, 26eqtrid 2789 . . . . 5 𝑊 ∈ V → 𝐵 = ∅)
2827ineq2d 4157 . . . 4 𝑊 ∈ V → (𝐴𝐵) = (𝐴 ∩ ∅))
29 reldmress 17013 . . . . . . 7 Rel dom ↾s
3029ovprc1 7354 . . . . . 6 𝑊 ∈ V → (𝑊s 𝐴) = ∅)
315, 30eqtrid 2789 . . . . 5 𝑊 ∈ V → 𝑅 = ∅)
3231fveq2d 6815 . . . 4 𝑊 ∈ V → (Base‘𝑅) = (Base‘∅))
3325, 28, 323eqtr4a 2803 . . 3 𝑊 ∈ V → (𝐴𝐵) = (Base‘𝑅))
3433adantr 481 . 2 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
3520, 34pm2.61ian 809 1 (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3441  cin 3896  wss 3897  c0 4267  cop 4577  cfv 6465  (class class class)co 7315   sSet csts 16934  ndxcnx 16964  Basecbs 16982  s cress 17011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-1cn 11002  ax-addcl 11004
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-nn 12047  df-sets 16935  df-slot 16953  df-ndx 16965  df-base 16983  df-ress 17012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator