| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvss | Structured version Visualization version GIF version | ||
| Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| strfvss.e | ⊢ 𝐸 = Slot 𝑁 |
| Ref | Expression |
|---|---|
| strfvss | ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvss.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | id 22 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 ∈ V) | |
| 3 | 1, 2 | strfvnd 17093 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 4 | fvssunirn 6853 | . . 3 ⊢ (𝑆‘𝑁) ⊆ ∪ ran 𝑆 | |
| 5 | 3, 4 | eqsstrdi 3979 | . 2 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
| 6 | fvprc 6814 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
| 7 | 0ss 4350 | . . 3 ⊢ ∅ ⊆ ∪ ran 𝑆 | |
| 8 | 6, 7 | eqsstrdi 3979 | . 2 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
| 9 | 5, 8 | pm2.61i 182 | 1 ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 ∪ cuni 4859 ran crn 5617 ‘cfv 6481 Slot cslot 17089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-slot 17090 |
| This theorem is referenced by: wunstr 17096 prdsvallem 17355 prdsval 17356 prdsbas 17358 prdsplusg 17359 prdsmulr 17360 prdsvsca 17361 prdshom 17368 |
| Copyright terms: Public domain | W3C validator |