MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvss Structured version   Visualization version   GIF version

Theorem strfvss 16888
Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
strfvss.e 𝐸 = Slot 𝑁
Assertion
Ref Expression
strfvss (𝐸𝑆) ⊆ ran 𝑆

Proof of Theorem strfvss
StepHypRef Expression
1 strfvss.e . . . 4 𝐸 = Slot 𝑁
2 id 22 . . . 4 (𝑆 ∈ V → 𝑆 ∈ V)
31, 2strfvnd 16886 . . 3 (𝑆 ∈ V → (𝐸𝑆) = (𝑆𝑁))
4 fvssunirn 6803 . . 3 (𝑆𝑁) ⊆ ran 𝑆
53, 4eqsstrdi 3975 . 2 (𝑆 ∈ V → (𝐸𝑆) ⊆ ran 𝑆)
6 fvprc 6766 . . 3 𝑆 ∈ V → (𝐸𝑆) = ∅)
7 0ss 4330 . . 3 ∅ ⊆ ran 𝑆
86, 7eqsstrdi 3975 . 2 𝑆 ∈ V → (𝐸𝑆) ⊆ ran 𝑆)
95, 8pm2.61i 182 1 (𝐸𝑆) ⊆ ran 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  c0 4256   cuni 4839  ran crn 5590  cfv 6433  Slot cslot 16882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-slot 16883
This theorem is referenced by:  wunstr  16889  prdsvallem  17165  prdsval  17166  prdsbas  17168  prdsplusg  17169  prdsmulr  17170  prdsvsca  17171  prdshom  17178
  Copyright terms: Public domain W3C validator