MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvss Structured version   Visualization version   GIF version

Theorem strfvss 17211
Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
strfvss.e 𝐸 = Slot 𝑁
Assertion
Ref Expression
strfvss (𝐸𝑆) ⊆ ran 𝑆

Proof of Theorem strfvss
StepHypRef Expression
1 strfvss.e . . . 4 𝐸 = Slot 𝑁
2 id 22 . . . 4 (𝑆 ∈ V → 𝑆 ∈ V)
31, 2strfvnd 17209 . . 3 (𝑆 ∈ V → (𝐸𝑆) = (𝑆𝑁))
4 fvssunirn 6914 . . 3 (𝑆𝑁) ⊆ ran 𝑆
53, 4eqsstrdi 4008 . 2 (𝑆 ∈ V → (𝐸𝑆) ⊆ ran 𝑆)
6 fvprc 6873 . . 3 𝑆 ∈ V → (𝐸𝑆) = ∅)
7 0ss 4380 . . 3 ∅ ⊆ ran 𝑆
86, 7eqsstrdi 4008 . 2 𝑆 ∈ V → (𝐸𝑆) ⊆ ran 𝑆)
95, 8pm2.61i 182 1 (𝐸𝑆) ⊆ ran 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  c0 4313   cuni 4888  ran crn 5660  cfv 6536  Slot cslot 17205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-slot 17206
This theorem is referenced by:  wunstr  17212  prdsvallem  17473  prdsval  17474  prdsbas  17476  prdsplusg  17477  prdsmulr  17478  prdsvsca  17479  prdshom  17486
  Copyright terms: Public domain W3C validator