Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strfvss | Structured version Visualization version GIF version |
Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
strfvss.e | ⊢ 𝐸 = Slot 𝑁 |
Ref | Expression |
---|---|
strfvss | ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvss.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | id 22 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 ∈ V) | |
3 | 1, 2 | strfvnd 16814 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝑆‘𝑁)) |
4 | fvssunirn 6785 | . . 3 ⊢ (𝑆‘𝑁) ⊆ ∪ ran 𝑆 | |
5 | 3, 4 | eqsstrdi 3971 | . 2 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
6 | fvprc 6748 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
7 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ ∪ ran 𝑆 | |
8 | 6, 7 | eqsstrdi 3971 | . 2 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
9 | 5, 8 | pm2.61i 182 | 1 ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ran crn 5581 ‘cfv 6418 Slot cslot 16810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-slot 16811 |
This theorem is referenced by: wunstr 16817 prdsvallem 17082 prdsval 17083 prdsbas 17085 prdsplusg 17086 prdsmulr 17087 prdsvsca 17088 prdshom 17095 |
Copyright terms: Public domain | W3C validator |