MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvss Structured version   Visualization version   GIF version

Theorem strfvss 16611
Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
ndxarg.1 𝐸 = Slot 𝑁
Assertion
Ref Expression
strfvss (𝐸𝑆) ⊆ ran 𝑆

Proof of Theorem strfvss
StepHypRef Expression
1 ndxarg.1 . . . 4 𝐸 = Slot 𝑁
2 id 22 . . . 4 (𝑆 ∈ V → 𝑆 ∈ V)
31, 2strfvnd 16607 . . 3 (𝑆 ∈ V → (𝐸𝑆) = (𝑆𝑁))
4 fvssunirn 6705 . . 3 (𝑆𝑁) ⊆ ran 𝑆
53, 4eqsstrdi 3931 . 2 (𝑆 ∈ V → (𝐸𝑆) ⊆ ran 𝑆)
6 fvprc 6668 . . 3 𝑆 ∈ V → (𝐸𝑆) = ∅)
7 0ss 4285 . . 3 ∅ ⊆ ran 𝑆
86, 7eqsstrdi 3931 . 2 𝑆 ∈ V → (𝐸𝑆) ⊆ ran 𝑆)
95, 8pm2.61i 185 1 (𝐸𝑆) ⊆ ran 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2114  Vcvv 3398  wss 3843  c0 4211   cuni 4796  ran crn 5526  cfv 6339  Slot cslot 16587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6297  df-fun 6341  df-fv 6347  df-slot 16592
This theorem is referenced by:  wunstr  16612  prdsval  16833  prdsbas  16835  prdsplusg  16836  prdsmulr  16837  prdsvsca  16838  prdshom  16845
  Copyright terms: Public domain W3C validator