| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strfvss | Structured version Visualization version GIF version | ||
| Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| strfvss.e | ⊢ 𝐸 = Slot 𝑁 |
| Ref | Expression |
|---|---|
| strfvss | ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvss.e | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | id 22 | . . . 4 ⊢ (𝑆 ∈ V → 𝑆 ∈ V) | |
| 3 | 1, 2 | strfvnd 17155 | . . 3 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 4 | fvssunirn 6891 | . . 3 ⊢ (𝑆‘𝑁) ⊆ ∪ ran 𝑆 | |
| 5 | 3, 4 | eqsstrdi 3991 | . 2 ⊢ (𝑆 ∈ V → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
| 6 | fvprc 6850 | . . 3 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) = ∅) | |
| 7 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ ∪ ran 𝑆 | |
| 8 | 6, 7 | eqsstrdi 3991 | . 2 ⊢ (¬ 𝑆 ∈ V → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
| 9 | 5, 8 | pm2.61i 182 | 1 ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 ran crn 5639 ‘cfv 6511 Slot cslot 17151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-slot 17152 |
| This theorem is referenced by: wunstr 17158 prdsvallem 17417 prdsval 17418 prdsbas 17420 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 prdshom 17430 |
| Copyright terms: Public domain | W3C validator |