MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvss Structured version   Visualization version   GIF version

Theorem strfvss 17164
Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
strfvss.e 𝐸 = Slot 𝑁
Assertion
Ref Expression
strfvss (𝐸𝑆) ⊆ ran 𝑆

Proof of Theorem strfvss
StepHypRef Expression
1 strfvss.e . . . 4 𝐸 = Slot 𝑁
2 id 22 . . . 4 (𝑆 ∈ V → 𝑆 ∈ V)
31, 2strfvnd 17162 . . 3 (𝑆 ∈ V → (𝐸𝑆) = (𝑆𝑁))
4 fvssunirn 6894 . . 3 (𝑆𝑁) ⊆ ran 𝑆
53, 4eqsstrdi 3994 . 2 (𝑆 ∈ V → (𝐸𝑆) ⊆ ran 𝑆)
6 fvprc 6853 . . 3 𝑆 ∈ V → (𝐸𝑆) = ∅)
7 0ss 4366 . . 3 ∅ ⊆ ran 𝑆
86, 7eqsstrdi 3994 . 2 𝑆 ∈ V → (𝐸𝑆) ⊆ ran 𝑆)
95, 8pm2.61i 182 1 (𝐸𝑆) ⊆ ran 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  c0 4299   cuni 4874  ran crn 5642  cfv 6514  Slot cslot 17158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-slot 17159
This theorem is referenced by:  wunstr  17165  prdsvallem  17424  prdsval  17425  prdsbas  17427  prdsplusg  17428  prdsmulr  17429  prdsvsca  17430  prdshom  17437
  Copyright terms: Public domain W3C validator