MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalfng Structured version   Visualization version   GIF version

Theorem suppvalfng 8174
Description: The value of the operation constructing the support of a function with a given domain. This version of suppvalfn 8175 assumes 𝐹 is a set rather than its domain 𝑋, avoiding ax-rep 5259. (Contributed by SN, 5-Aug-2024.)
Assertion
Ref Expression
suppvalfng ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍   𝑖,𝐹

Proof of Theorem suppvalfng
StepHypRef Expression
1 fnfun 6648 . . 3 (𝐹 Fn 𝑋 → Fun 𝐹)
2 suppval1 8173 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
31, 2syl3an1 1163 . 2 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
4 fndm 6651 . . . 4 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
543ad2ant1 1133 . . 3 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → dom 𝐹 = 𝑋)
65rabeqdv 3435 . 2 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍} = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
73, 6eqtrd 2769 1 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wne 2931  {crab 3419  dom cdm 5665  Fun wfun 6535   Fn wfn 6536  cfv 6541  (class class class)co 7413   supp csupp 8167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-supp 8168
This theorem is referenced by:  elsuppfng  8176
  Copyright terms: Public domain W3C validator