MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalfng Structured version   Visualization version   GIF version

Theorem suppvalfng 8097
Description: The value of the operation constructing the support of a function with a given domain. This version of suppvalfn 8098 assumes 𝐹 is a set rather than its domain 𝑋, avoiding ax-rep 5215. (Contributed by SN, 5-Aug-2024.)
Assertion
Ref Expression
suppvalfng ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍   𝑖,𝐹

Proof of Theorem suppvalfng
StepHypRef Expression
1 fnfun 6581 . . 3 (𝐹 Fn 𝑋 → Fun 𝐹)
2 suppval1 8096 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
31, 2syl3an1 1163 . 2 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
4 fndm 6584 . . . 4 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
543ad2ant1 1133 . . 3 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → dom 𝐹 = 𝑋)
65rabeqdv 3410 . 2 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍} = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
73, 6eqtrd 2766 1 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {crab 3395  dom cdm 5614  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346   supp csupp 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-supp 8091
This theorem is referenced by:  elsuppfng  8099
  Copyright terms: Public domain W3C validator