![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppvalfng | Structured version Visualization version GIF version |
Description: The value of the operation constructing the support of a function with a given domain. This version of suppvalfn 8154 assumes 𝐹 is a set rather than its domain 𝑋, avoiding ax-rep 5286. (Contributed by SN, 5-Aug-2024.) |
Ref | Expression |
---|---|
suppvalfng | ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6650 | . . 3 ⊢ (𝐹 Fn 𝑋 → Fun 𝐹) | |
2 | suppval1 8152 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍}) | |
3 | 1, 2 | syl3an1 1164 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
4 | fndm 6653 | . . . 4 ⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) | |
5 | 4 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝐹 = 𝑋) |
6 | 5 | rabeqdv 3448 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍} = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
7 | 3, 6 | eqtrd 2773 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 {crab 3433 dom cdm 5677 Fun wfun 6538 Fn wfn 6539 ‘cfv 6544 (class class class)co 7409 supp csupp 8146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-supp 8147 |
This theorem is referenced by: elsuppfng 8155 |
Copyright terms: Public domain | W3C validator |