| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppvalfng | Structured version Visualization version GIF version | ||
| Description: The value of the operation constructing the support of a function with a given domain. This version of suppvalfn 8101 assumes 𝐹 is a set rather than its domain 𝑋, avoiding ax-rep 5218. (Contributed by SN, 5-Aug-2024.) |
| Ref | Expression |
|---|---|
| suppvalfng | ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6582 | . . 3 ⊢ (𝐹 Fn 𝑋 → Fun 𝐹) | |
| 2 | suppval1 8099 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍}) | |
| 3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| 4 | fndm 6585 | . . . 4 ⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) | |
| 5 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝐹 = 𝑋) |
| 6 | 5 | rabeqdv 3410 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍} = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| 7 | 3, 6 | eqtrd 2764 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3394 dom cdm 5619 Fun wfun 6476 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 supp csupp 8093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-supp 8094 |
| This theorem is referenced by: elsuppfng 8102 |
| Copyright terms: Public domain | W3C validator |