MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalfng Structured version   Visualization version   GIF version

Theorem suppvalfng 8210
Description: The value of the operation constructing the support of a function with a given domain. This version of suppvalfn 8211 assumes 𝐹 is a set rather than its domain 𝑋, avoiding ax-rep 5303. (Contributed by SN, 5-Aug-2024.)
Assertion
Ref Expression
suppvalfng ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍   𝑖,𝐹

Proof of Theorem suppvalfng
StepHypRef Expression
1 fnfun 6681 . . 3 (𝐹 Fn 𝑋 → Fun 𝐹)
2 suppval1 8209 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
31, 2syl3an1 1163 . 2 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
4 fndm 6684 . . . 4 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
543ad2ant1 1133 . . 3 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → dom 𝐹 = 𝑋)
65rabeqdv 3459 . 2 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍} = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
73, 6eqtrd 2780 1 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  dom cdm 5700  Fun wfun 6569   Fn wfn 6570  cfv 6575  (class class class)co 7450   supp csupp 8203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-supp 8204
This theorem is referenced by:  elsuppfng  8212
  Copyright terms: Public domain W3C validator