MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalfng Structured version   Visualization version   GIF version

Theorem suppvalfng 7849
Description: The value of the operation constructing the support of a function with a given domain. This version of suppvalfn 7850 assumes 𝐹 is a set rather than its domain 𝑋, avoiding ax-rep 5161. (Contributed by SN, 5-Aug-2024.)
Assertion
Ref Expression
suppvalfng ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍   𝑖,𝐹

Proof of Theorem suppvalfng
StepHypRef Expression
1 fnfun 6440 . . 3 (𝐹 Fn 𝑋 → Fun 𝐹)
2 suppval1 7848 . . 3 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
31, 2syl3an1 1161 . 2 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
4 fndm 6442 . . . 4 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
543ad2ant1 1131 . . 3 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → dom 𝐹 = 𝑋)
65rabeqdv 3398 . 2 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍} = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
73, 6eqtrd 2794 1 ((𝐹 Fn 𝑋𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2112  wne 2952  {crab 3075  dom cdm 5529  Fun wfun 6335   Fn wfn 6336  cfv 6341  (class class class)co 7157   supp csupp 7842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pr 5303  ax-un 7466
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3700  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-opab 5100  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6300  df-fun 6343  df-fn 6344  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-supp 7843
This theorem is referenced by:  elsuppfng  7851
  Copyright terms: Public domain W3C validator