| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsuppfng | Structured version Visualization version GIF version | ||
| Description: An element of the support of a function with a given domain. This version of elsuppfn 8100 assumes 𝐹 is a set rather than its domain 𝑋, avoiding ax-rep 5215. (Contributed by SN, 5-Aug-2024.) |
| Ref | Expression |
|---|---|
| elsuppfng | ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppvalfng 8097 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ 𝑆 ∈ {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍})) |
| 3 | fveq2 6822 | . . . 4 ⊢ (𝑖 = 𝑆 → (𝐹‘𝑖) = (𝐹‘𝑆)) | |
| 4 | 3 | neeq1d 2987 | . . 3 ⊢ (𝑖 = 𝑆 → ((𝐹‘𝑖) ≠ 𝑍 ↔ (𝐹‘𝑆) ≠ 𝑍)) |
| 5 | 4 | elrab 3642 | . 2 ⊢ (𝑆 ∈ {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍} ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍)) |
| 6 | 2, 5 | bitrdi 287 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑆 ∈ (𝐹 supp 𝑍) ↔ (𝑆 ∈ 𝑋 ∧ (𝐹‘𝑆) ≠ 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-supp 8091 |
| This theorem is referenced by: suppss 8124 suppssrg 8126 ciclcl 17709 cicrcl 17710 ismhp3 22057 mdegleb 25996 suppiniseg 32667 |
| Copyright terms: Public domain | W3C validator |