MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalfn Structured version   Visualization version   GIF version

Theorem suppvalfn 8167
Description: The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 22-Apr-2019.)
Assertion
Ref Expression
suppvalfn ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍   𝑖,𝐹

Proof of Theorem suppvalfn
StepHypRef Expression
1 fnfun 6638 . . . 4 (𝐹 Fn 𝑋 → Fun 𝐹)
213ad2ant1 1133 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → Fun 𝐹)
3 fnex 7209 . . . 4 ((𝐹 Fn 𝑋𝑋𝑉) → 𝐹 ∈ V)
433adant3 1132 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → 𝐹 ∈ V)
5 simp3 1138 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → 𝑍𝑊)
6 suppval1 8165 . . 3 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
72, 4, 5, 6syl3anc 1373 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
8 fndm 6641 . . . 4 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
983ad2ant1 1133 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → dom 𝐹 = 𝑋)
109rabeqdv 3431 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍} = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
117, 10eqtrd 2770 1 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  wne 2932  {crab 3415  Vcvv 3459  dom cdm 5654  Fun wfun 6525   Fn wfn 6526  cfv 6531  (class class class)co 7405   supp csupp 8159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-supp 8160
This theorem is referenced by:  elsuppfn  8169  cantnflem1  9703  fsuppmapnn0fiub0  14011  fsuppmapnn0ub  14013  mptnn0fsupp  14015  mptnn0fsuppr  14017  cicer  17819  rrgsupp  20661  mptscmfsupp0  20884  frlmbas  21715  frlmssuvc2  21755  pmatcollpw2lem  22715  rrxmvallem  25356  fpwrelmapffslem  32709  fedgmullem2  33670  fsumcvg4  33981  fsuppind  42613  fsumsupp0  45607  relcic  49012
  Copyright terms: Public domain W3C validator