| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppvalfn | Structured version Visualization version GIF version | ||
| Description: The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| suppvalfn | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6668 | . . . 4 ⊢ (𝐹 Fn 𝑋 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → Fun 𝐹) |
| 3 | fnex 7237 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ V) | |
| 4 | 3 | 3adant3 1133 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐹 ∈ V) |
| 5 | simp3 1139 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑍 ∈ 𝑊) | |
| 6 | suppval1 8191 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍}) | |
| 7 | 2, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| 8 | fndm 6671 | . . . 4 ⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) | |
| 9 | 8 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝐹 = 𝑋) |
| 10 | 9 | rabeqdv 3452 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍} = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| 11 | 7, 10 | eqtrd 2777 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {crab 3436 Vcvv 3480 dom cdm 5685 Fun wfun 6555 Fn wfn 6556 ‘cfv 6561 (class class class)co 7431 supp csupp 8185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-supp 8186 |
| This theorem is referenced by: elsuppfn 8195 cantnflem1 9729 fsuppmapnn0fiub0 14034 fsuppmapnn0ub 14036 mptnn0fsupp 14038 mptnn0fsuppr 14040 cicer 17850 rrgsupp 20701 mptscmfsupp0 20925 frlmbas 21775 frlmssuvc2 21815 pmatcollpw2lem 22783 rrxmvallem 25438 fpwrelmapffslem 32743 fedgmullem2 33681 fsumcvg4 33949 fsuppind 42600 fsumsupp0 45593 |
| Copyright terms: Public domain | W3C validator |