MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalfn Structured version   Visualization version   GIF version

Theorem suppvalfn 7985
Description: The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 22-Apr-2019.)
Assertion
Ref Expression
suppvalfn ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊   𝑖,𝑋   𝑖,𝑍   𝑖,𝐹

Proof of Theorem suppvalfn
StepHypRef Expression
1 fnfun 6533 . . . 4 (𝐹 Fn 𝑋 → Fun 𝐹)
213ad2ant1 1132 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → Fun 𝐹)
3 fnex 7093 . . . 4 ((𝐹 Fn 𝑋𝑋𝑉) → 𝐹 ∈ V)
433adant3 1131 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → 𝐹 ∈ V)
5 simp3 1137 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → 𝑍𝑊)
6 suppval1 7983 . . 3 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
72, 4, 5, 6syl3anc 1370 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍})
8 fndm 6536 . . . 4 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
983ad2ant1 1132 . . 3 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → dom 𝐹 = 𝑋)
109rabeqdv 3419 . 2 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹𝑖) ≠ 𝑍} = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
117, 10eqtrd 2778 1 ((𝐹 Fn 𝑋𝑋𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑖𝑋 ∣ (𝐹𝑖) ≠ 𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  dom cdm 5589  Fun wfun 6427   Fn wfn 6428  cfv 6433  (class class class)co 7275   supp csupp 7977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-supp 7978
This theorem is referenced by:  elsuppfn  7987  cantnflem1  9447  fsuppmapnn0fiub0  13713  fsuppmapnn0ub  13715  mptnn0fsupp  13717  mptnn0fsuppr  13719  cicer  17518  mptscmfsupp0  20188  rrgsupp  20562  frlmbas  20962  frlmssuvc2  21002  pmatcollpw2lem  21926  rrxmvallem  24568  fpwrelmapffslem  31067  fedgmullem2  31711  fsumcvg4  31900  fsuppind  40279  fsumsupp0  43119
  Copyright terms: Public domain W3C validator