| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppvalfn | Structured version Visualization version GIF version | ||
| Description: The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| suppvalfn | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6582 | . . . 4 ⊢ (𝐹 Fn 𝑋 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → Fun 𝐹) |
| 3 | fnex 7153 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ V) | |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐹 ∈ V) |
| 5 | simp3 1138 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑍 ∈ 𝑊) | |
| 6 | suppval1 8099 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍}) | |
| 7 | 2, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| 8 | fndm 6585 | . . . 4 ⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) | |
| 9 | 8 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝐹 = 𝑋) |
| 10 | 9 | rabeqdv 3410 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍} = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| 11 | 7, 10 | eqtrd 2764 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3394 Vcvv 3436 dom cdm 5619 Fun wfun 6476 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 supp csupp 8093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-supp 8094 |
| This theorem is referenced by: elsuppfn 8103 cantnflem1 9585 fsuppmapnn0fiub0 13900 fsuppmapnn0ub 13902 mptnn0fsupp 13904 mptnn0fsuppr 13906 cicer 17713 rrgsupp 20586 mptscmfsupp0 20830 frlmbas 21662 frlmssuvc2 21702 pmatcollpw2lem 22662 rrxmvallem 25302 fpwrelmapffslem 32676 fedgmullem2 33603 fsumcvg4 33923 fsuppind 42573 fsumsupp0 45569 relcic 49040 |
| Copyright terms: Public domain | W3C validator |