| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppvalfn | Structured version Visualization version GIF version | ||
| Description: The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| suppvalfn | ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6638 | . . . 4 ⊢ (𝐹 Fn 𝑋 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → Fun 𝐹) |
| 3 | fnex 7209 | . . . 4 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ V) | |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐹 ∈ V) |
| 5 | simp3 1138 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑍 ∈ 𝑊) | |
| 6 | suppval1 8165 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍}) | |
| 7 | 2, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| 8 | fndm 6641 | . . . 4 ⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) | |
| 9 | 8 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → dom 𝐹 = 𝑋) |
| 10 | 9 | rabeqdv 3431 | . 2 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑖 ∈ dom 𝐹 ∣ (𝐹‘𝑖) ≠ 𝑍} = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| 11 | 7, 10 | eqtrd 2770 | 1 ⊢ ((𝐹 Fn 𝑋 ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑖 ∈ 𝑋 ∣ (𝐹‘𝑖) ≠ 𝑍}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {crab 3415 Vcvv 3459 dom cdm 5654 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 supp csupp 8159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-supp 8160 |
| This theorem is referenced by: elsuppfn 8169 cantnflem1 9703 fsuppmapnn0fiub0 14011 fsuppmapnn0ub 14013 mptnn0fsupp 14015 mptnn0fsuppr 14017 cicer 17819 rrgsupp 20661 mptscmfsupp0 20884 frlmbas 21715 frlmssuvc2 21755 pmatcollpw2lem 22715 rrxmvallem 25356 fpwrelmapffslem 32709 fedgmullem2 33670 fsumcvg4 33981 fsuppind 42613 fsumsupp0 45607 relcic 49012 |
| Copyright terms: Public domain | W3C validator |