| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapfelvv | Structured version Visualization version GIF version | ||
| Description: A swap functor is an ordered pair. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| swapfval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| swapfelvv | ⊢ (𝜑 → (𝐶swapF𝐷) ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 2 | swapfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | eqid 2736 | . . 3 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 4 | eqid 2736 | . . 3 ⊢ (Base‘(𝐶 ×c 𝐷)) = (Base‘(𝐶 ×c 𝐷)) | |
| 5 | eqidd 2737 | . . 3 ⊢ (𝜑 → (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | swapfval 48941 | . 2 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈(𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 7 | fvex 6917 | . . . 4 ⊢ (Base‘(𝐶 ×c 𝐷)) ∈ V | |
| 8 | 7 | mptex 7241 | . . 3 ⊢ (𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ ∪ ◡{𝑥}) ∈ V |
| 9 | 7, 7 | mpoex 8100 | . . 3 ⊢ (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ ∪ ◡{𝑓})) ∈ V |
| 10 | 8, 9 | opelvv 5723 | . 2 ⊢ 〈(𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ ∪ ◡{𝑓}))〉 ∈ (V × V) |
| 11 | 6, 10 | eqeltrdi 2848 | 1 ⊢ (𝜑 → (𝐶swapF𝐷) ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3479 {csn 4624 〈cop 4630 ∪ cuni 4905 ↦ cmpt 5223 × cxp 5681 ◡ccnv 5682 ‘cfv 6559 (class class class)co 7429 ∈ cmpo 7431 Basecbs 17243 Hom chom 17304 ×c cxpc 18209 swapFcswapf 48938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-swapf 48939 |
| This theorem is referenced by: swapf2fval 48944 swapf1val 48946 swapffunca 48963 swapfiso 48964 cofuswapf1 48967 cofuswapf2 48968 |
| Copyright terms: Public domain | W3C validator |