| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapfelvv | Structured version Visualization version GIF version | ||
| Description: A swap functor is an ordered pair. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| swapfval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| swapfelvv | ⊢ (𝜑 → (𝐶swapF𝐷) ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 2 | swapfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | eqid 2734 | . . 3 ⊢ (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷) | |
| 4 | eqid 2734 | . . 3 ⊢ (Base‘(𝐶 ×c 𝐷)) = (Base‘(𝐶 ×c 𝐷)) | |
| 5 | eqidd 2735 | . . 3 ⊢ (𝜑 → (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | swapfval 49013 | . 2 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈(𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 7 | fvex 6899 | . . . 4 ⊢ (Base‘(𝐶 ×c 𝐷)) ∈ V | |
| 8 | 7 | mptex 7225 | . . 3 ⊢ (𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ ∪ ◡{𝑥}) ∈ V |
| 9 | 7, 7 | mpoex 8086 | . . 3 ⊢ (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ ∪ ◡{𝑓})) ∈ V |
| 10 | 8, 9 | opelvv 5705 | . 2 ⊢ 〈(𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ ∪ ◡{𝑥}), (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ ∪ ◡{𝑓}))〉 ∈ (V × V) |
| 11 | 6, 10 | eqeltrdi 2841 | 1 ⊢ (𝜑 → (𝐶swapF𝐷) ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3463 {csn 4606 〈cop 4612 ∪ cuni 4887 ↦ cmpt 5205 × cxp 5663 ◡ccnv 5664 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 Basecbs 17230 Hom chom 17285 ×c cxpc 18184 swapFcswapf 49010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-swapf 49011 |
| This theorem is referenced by: swapf2fval 49016 swapf1val 49018 swapffunca 49035 swapfiso 49036 cofuswapf1 49039 cofuswapf2 49040 |
| Copyright terms: Public domain | W3C validator |