Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapfelvv Structured version   Visualization version   GIF version

Theorem swapfelvv 49014
Description: A swap functor is an ordered pair. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
Assertion
Ref Expression
swapfelvv (𝜑 → (𝐶swapF𝐷) ∈ (V × V))

Proof of Theorem swapfelvv
Dummy variables 𝑢 𝑣 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swapfval.c . . 3 (𝜑𝐶𝑈)
2 swapfval.d . . 3 (𝜑𝐷𝑉)
3 eqid 2734 . . 3 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
4 eqid 2734 . . 3 (Base‘(𝐶 ×c 𝐷)) = (Base‘(𝐶 ×c 𝐷))
5 eqidd 2735 . . 3 (𝜑 → (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)))
61, 2, 3, 4, 5swapfval 49013 . 2 (𝜑 → (𝐶swapF𝐷) = ⟨(𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ {𝑥}), (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ {𝑓}))⟩)
7 fvex 6899 . . . 4 (Base‘(𝐶 ×c 𝐷)) ∈ V
87mptex 7225 . . 3 (𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ {𝑥}) ∈ V
97, 7mpoex 8086 . . 3 (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ {𝑓})) ∈ V
108, 9opelvv 5705 . 2 ⟨(𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ {𝑥}), (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ {𝑓}))⟩ ∈ (V × V)
116, 10eqeltrdi 2841 1 (𝜑 → (𝐶swapF𝐷) ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3463  {csn 4606  cop 4612   cuni 4887  cmpt 5205   × cxp 5663  ccnv 5664  cfv 6541  (class class class)co 7413  cmpo 7415  Basecbs 17230  Hom chom 17285   ×c cxpc 18184  swapFcswapf 49010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-swapf 49011
This theorem is referenced by:  swapf2fval  49016  swapf1val  49018  swapffunca  49035  swapfiso  49036  cofuswapf1  49039  cofuswapf2  49040
  Copyright terms: Public domain W3C validator