Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapfelvv Structured version   Visualization version   GIF version

Theorem swapfelvv 49248
Description: A swap functor is an ordered pair. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
Assertion
Ref Expression
swapfelvv (𝜑 → (𝐶 swapF 𝐷) ∈ (V × V))

Proof of Theorem swapfelvv
Dummy variables 𝑢 𝑣 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swapfval.c . . 3 (𝜑𝐶𝑈)
2 swapfval.d . . 3 (𝜑𝐷𝑉)
3 eqid 2729 . . 3 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
4 eqid 2729 . . 3 (Base‘(𝐶 ×c 𝐷)) = (Base‘(𝐶 ×c 𝐷))
5 eqidd 2730 . . 3 (𝜑 → (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)))
61, 2, 3, 4, 5swapfval 49247 . 2 (𝜑 → (𝐶 swapF 𝐷) = ⟨(𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ {𝑥}), (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ {𝑓}))⟩)
7 fvex 6835 . . . 4 (Base‘(𝐶 ×c 𝐷)) ∈ V
87mptex 7159 . . 3 (𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ {𝑥}) ∈ V
97, 7mpoex 8014 . . 3 (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ {𝑓})) ∈ V
108, 9opelvv 5659 . 2 ⟨(𝑥 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ {𝑥}), (𝑢 ∈ (Base‘(𝐶 ×c 𝐷)), 𝑣 ∈ (Base‘(𝐶 ×c 𝐷)) ↦ (𝑓 ∈ (𝑢(Hom ‘(𝐶 ×c 𝐷))𝑣) ↦ {𝑓}))⟩ ∈ (V × V)
116, 10eqeltrdi 2836 1 (𝜑 → (𝐶 swapF 𝐷) ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3436  {csn 4577  cop 4583   cuni 4858  cmpt 5173   × cxp 5617  ccnv 5618  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Hom chom 17172   ×c cxpc 18074   swapF cswapf 49244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-swapf 49245
This theorem is referenced by:  swapf2fval  49250  swapf1val  49252  swapffunca  49269  swapfiso  49270  cofuswapf1  49279  cofuswapf2  49280
  Copyright terms: Public domain W3C validator