Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf1vala Structured version   Visualization version   GIF version

Theorem swapf1vala 49271
Description: The object part of the swap functor. See also swapf1val 49272. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapf2fvala.s 𝑆 = (𝐶 ×c 𝐷)
swapf2fvala.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
swapf1vala (𝜑 → (1st ‘(𝐶 swapF 𝐷)) = (𝑥𝐵 {𝑥}))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝑉(𝑥)

Proof of Theorem swapf1vala
Dummy variables 𝑢 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swapfval.c . . . 4 (𝜑𝐶𝑈)
2 swapfval.d . . . 4 (𝜑𝐷𝑉)
3 swapf2fvala.s . . . 4 𝑆 = (𝐶 ×c 𝐷)
4 swapf2fvala.b . . . 4 𝐵 = (Base‘𝑆)
5 eqidd 2730 . . . 4 (𝜑 → (Hom ‘𝑆) = (Hom ‘𝑆))
61, 2, 3, 4, 5swapfval 49267 . . 3 (𝜑 → (𝐶 swapF 𝐷) = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓}))⟩)
76fveq2d 6830 . 2 (𝜑 → (1st ‘(𝐶 swapF 𝐷)) = (1st ‘⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓}))⟩))
84fvexi 6840 . . . 4 𝐵 ∈ V
98mptex 7163 . . 3 (𝑥𝐵 {𝑥}) ∈ V
108, 8mpoex 8021 . . 3 (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓})) ∈ V
119, 10op1st 7939 . 2 (1st ‘⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ {𝑓}))⟩) = (𝑥𝐵 {𝑥})
127, 11eqtrdi 2780 1 (𝜑 → (1st ‘(𝐶 swapF 𝐷)) = (𝑥𝐵 {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4579  cop 4585   cuni 4861  cmpt 5176  ccnv 5622  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  Basecbs 17139  Hom chom 17191   ×c cxpc 18093   swapF cswapf 49264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-swapf 49265
This theorem is referenced by:  swapf1val  49272
  Copyright terms: Public domain W3C validator