| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf1vala | Structured version Visualization version GIF version | ||
| Description: The object part of the swap functor. See also swapf1val 49229. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| swapfval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| swapf2fvala.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf2fvala.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| swapf1vala | ⊢ (𝜑 → (1st ‘(𝐶 swapF 𝐷)) = (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 2 | swapfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | swapf2fvala.s | . . . 4 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 4 | swapf2fvala.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (Hom ‘𝑆) = (Hom ‘𝑆)) | |
| 6 | 1, 2, 3, 4, 5 | swapfval 49224 | . . 3 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 7 | 6 | fveq2d 6844 | . 2 ⊢ (𝜑 → (1st ‘(𝐶 swapF 𝐷)) = (1st ‘〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓}))〉)) |
| 8 | 4 | fvexi 6854 | . . . 4 ⊢ 𝐵 ∈ V |
| 9 | 8 | mptex 7179 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}) ∈ V |
| 10 | 8, 8 | mpoex 8037 | . . 3 ⊢ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓})) ∈ V |
| 11 | 9, 10 | op1st 7955 | . 2 ⊢ (1st ‘〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢(Hom ‘𝑆)𝑣) ↦ ∪ ◡{𝑓}))〉) = (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}) |
| 12 | 7, 11 | eqtrdi 2780 | 1 ⊢ (𝜑 → (1st ‘(𝐶 swapF 𝐷)) = (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4585 〈cop 4591 ∪ cuni 4867 ↦ cmpt 5183 ◡ccnv 5630 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 Basecbs 17155 Hom chom 17207 ×c cxpc 18105 swapF cswapf 49221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-swapf 49222 |
| This theorem is referenced by: swapf1val 49229 |
| Copyright terms: Public domain | W3C validator |