| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2fvala | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor. See also swapf2fval 49250. (Contributed by Zhi Wang, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| swapfval.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| swapf2fvala.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf2fvala.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf2fvala.h | ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) |
| Ref | Expression |
|---|---|
| swapf2fvala | ⊢ (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 2 | swapfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | swapf2fvala.s | . . . 4 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 4 | swapf2fvala.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | swapf2fvala.h | . . . 4 ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) | |
| 6 | 1, 2, 3, 4, 5 | swapfval 49247 | . . 3 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉) |
| 7 | 6 | fveq2d 6826 | . 2 ⊢ (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (2nd ‘〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉)) |
| 8 | 4 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 9 | 8 | mptex 7159 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}) ∈ V |
| 10 | 8, 8 | mpoex 8014 | . . 3 ⊢ (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓})) ∈ V |
| 11 | 9, 10 | op2nd 7933 | . 2 ⊢ (2nd ‘〈(𝑥 ∈ 𝐵 ↦ ∪ ◡{𝑥}), (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))〉) = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓})) |
| 12 | 7, 11 | eqtrdi 2780 | 1 ⊢ (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ ∪ ◡{𝑓}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4577 〈cop 4583 ∪ cuni 4858 ↦ cmpt 5173 ◡ccnv 5618 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 2nd c2nd 7923 Basecbs 17120 Hom chom 17172 ×c cxpc 18074 swapF cswapf 49244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-swapf 49245 |
| This theorem is referenced by: swapf2fval 49250 |
| Copyright terms: Public domain | W3C validator |