Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2fvala Structured version   Visualization version   GIF version

Theorem swapf2fvala 49249
Description: The morphism part of the swap functor. See also swapf2fval 49250. (Contributed by Zhi Wang, 7-Oct-2025.)
Hypotheses
Ref Expression
swapfval.c (𝜑𝐶𝑈)
swapfval.d (𝜑𝐷𝑉)
swapf2fvala.s 𝑆 = (𝐶 ×c 𝐷)
swapf2fvala.b 𝐵 = (Base‘𝑆)
swapf2fvala.h (𝜑𝐻 = (Hom ‘𝑆))
Assertion
Ref Expression
swapf2fvala (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
Distinct variable groups:   𝑢,𝐵,𝑣   𝑢,𝐶,𝑣   𝑢,𝐷,𝑣   𝑓,𝐻,𝑢,𝑣   𝑢,𝑆,𝑣   𝜑,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑆(𝑓)   𝑈(𝑣,𝑢,𝑓)   𝑉(𝑣,𝑢,𝑓)

Proof of Theorem swapf2fvala
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 swapfval.c . . . 4 (𝜑𝐶𝑈)
2 swapfval.d . . . 4 (𝜑𝐷𝑉)
3 swapf2fvala.s . . . 4 𝑆 = (𝐶 ×c 𝐷)
4 swapf2fvala.b . . . 4 𝐵 = (Base‘𝑆)
5 swapf2fvala.h . . . 4 (𝜑𝐻 = (Hom ‘𝑆))
61, 2, 3, 4, 5swapfval 49247 . . 3 (𝜑 → (𝐶 swapF 𝐷) = ⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩)
76fveq2d 6826 . 2 (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (2nd ‘⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩))
84fvexi 6836 . . . 4 𝐵 ∈ V
98mptex 7159 . . 3 (𝑥𝐵 {𝑥}) ∈ V
108, 8mpoex 8014 . . 3 (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})) ∈ V
119, 10op2nd 7933 . 2 (2nd ‘⟨(𝑥𝐵 {𝑥}), (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))⟩) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓}))
127, 11eqtrdi 2780 1 (𝜑 → (2nd ‘(𝐶 swapF 𝐷)) = (𝑢𝐵, 𝑣𝐵 ↦ (𝑓 ∈ (𝑢𝐻𝑣) ↦ {𝑓})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4577  cop 4583   cuni 4858  cmpt 5173  ccnv 5618  cfv 6482  (class class class)co 7349  cmpo 7351  2nd c2nd 7923  Basecbs 17120  Hom chom 17172   ×c cxpc 18074   swapF cswapf 49244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-swapf 49245
This theorem is referenced by:  swapf2fval  49250
  Copyright terms: Public domain W3C validator