MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf Structured version   Visualization version   GIF version

Theorem symgextf 19450
Description: The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf
StepHypRef Expression
1 simplll 775 . . 3 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ 𝑥 = 𝐾) → 𝐾𝑁)
2 simpllr 776 . . . . 5 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑍𝑆)
3 simpr 484 . . . . . . 7 (((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) → 𝑥𝑁)
4 neqne 2946 . . . . . . 7 𝑥 = 𝐾𝑥𝐾)
53, 4anim12i 613 . . . . . 6 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑥𝑁𝑥𝐾))
6 eldifsn 4791 . . . . . 6 (𝑥 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑥𝑁𝑥𝐾))
75, 6sylibr 234 . . . . 5 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑥 ∈ (𝑁 ∖ {𝐾}))
8 eqid 2735 . . . . . 6 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
9 symgext.s . . . . . 6 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
108, 9symgfv 19412 . . . . 5 ((𝑍𝑆𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑍𝑥) ∈ (𝑁 ∖ {𝐾}))
112, 7, 10syl2anc 584 . . . 4 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍𝑥) ∈ (𝑁 ∖ {𝐾}))
1211eldifad 3975 . . 3 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍𝑥) ∈ 𝑁)
131, 12ifclda 4566 . 2 (((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) ∈ 𝑁)
14 symgext.e . 2 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
1513, 14fmptd 7134 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cdif 3960  ifcif 4531  {csn 4631  cmpt 5231  wf 6559  cfv 6563  Basecbs 17245  SymGrpcsymg 19401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-tset 17317  df-efmnd 18895  df-symg 19402
This theorem is referenced by:  symgextf1  19454  symgextfo  19455  symgextres  19458
  Copyright terms: Public domain W3C validator