![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgextf | Structured version Visualization version GIF version |
Description: The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
Ref | Expression |
---|---|
symgextf | ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 772 | . . 3 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ 𝑥 = 𝐾) → 𝐾 ∈ 𝑁) | |
2 | simpllr 773 | . . . . 5 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑍 ∈ 𝑆) | |
3 | simpr 484 | . . . . . . 7 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
4 | neqne 2940 | . . . . . . 7 ⊢ (¬ 𝑥 = 𝐾 → 𝑥 ≠ 𝐾) | |
5 | 3, 4 | anim12i 612 | . . . . . 6 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑥 ∈ 𝑁 ∧ 𝑥 ≠ 𝐾)) |
6 | eldifsn 4783 | . . . . . 6 ⊢ (𝑥 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑥 ∈ 𝑁 ∧ 𝑥 ≠ 𝐾)) | |
7 | 5, 6 | sylibr 233 | . . . . 5 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑥 ∈ (𝑁 ∖ {𝐾})) |
8 | eqid 2724 | . . . . . 6 ⊢ (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾})) | |
9 | symgext.s | . . . . . 6 ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
10 | 8, 9 | symgfv 19295 | . . . . 5 ⊢ ((𝑍 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑍‘𝑥) ∈ (𝑁 ∖ {𝐾})) |
11 | 2, 7, 10 | syl2anc 583 | . . . 4 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍‘𝑥) ∈ (𝑁 ∖ {𝐾})) |
12 | 11 | eldifad 3953 | . . 3 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍‘𝑥) ∈ 𝑁) |
13 | 1, 12 | ifclda 4556 | . 2 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) → if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥)) ∈ 𝑁) |
14 | symgext.e | . 2 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
15 | 13, 14 | fmptd 7106 | 1 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∖ cdif 3938 ifcif 4521 {csn 4621 ↦ cmpt 5222 ⟶wf 6530 ‘cfv 6534 Basecbs 17149 SymGrpcsymg 19282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-tset 17221 df-efmnd 18790 df-symg 19283 |
This theorem is referenced by: symgextf1 19337 symgextfo 19338 symgextres 19341 |
Copyright terms: Public domain | W3C validator |