![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgextf | Structured version Visualization version GIF version |
Description: The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
Ref | Expression |
---|---|
symgextf | ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 774 | . . 3 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ 𝑥 = 𝐾) → 𝐾 ∈ 𝑁) | |
2 | simpllr 775 | . . . . 5 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑍 ∈ 𝑆) | |
3 | simpr 484 | . . . . . . 7 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
4 | neqne 2954 | . . . . . . 7 ⊢ (¬ 𝑥 = 𝐾 → 𝑥 ≠ 𝐾) | |
5 | 3, 4 | anim12i 612 | . . . . . 6 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑥 ∈ 𝑁 ∧ 𝑥 ≠ 𝐾)) |
6 | eldifsn 4811 | . . . . . 6 ⊢ (𝑥 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑥 ∈ 𝑁 ∧ 𝑥 ≠ 𝐾)) | |
7 | 5, 6 | sylibr 234 | . . . . 5 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑥 ∈ (𝑁 ∖ {𝐾})) |
8 | eqid 2740 | . . . . . 6 ⊢ (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾})) | |
9 | symgext.s | . . . . . 6 ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
10 | 8, 9 | symgfv 19421 | . . . . 5 ⊢ ((𝑍 ∈ 𝑆 ∧ 𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑍‘𝑥) ∈ (𝑁 ∖ {𝐾})) |
11 | 2, 7, 10 | syl2anc 583 | . . . 4 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍‘𝑥) ∈ (𝑁 ∖ {𝐾})) |
12 | 11 | eldifad 3988 | . . 3 ⊢ ((((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍‘𝑥) ∈ 𝑁) |
13 | 1, 12 | ifclda 4583 | . 2 ⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑥 ∈ 𝑁) → if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥)) ∈ 𝑁) |
14 | symgext.e | . 2 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
15 | 13, 14 | fmptd 7148 | 1 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ifcif 4548 {csn 4648 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 Basecbs 17258 SymGrpcsymg 19410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-tset 17330 df-efmnd 18904 df-symg 19411 |
This theorem is referenced by: symgextf1 19463 symgextfo 19464 symgextres 19467 |
Copyright terms: Public domain | W3C validator |