MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf Structured version   Visualization version   GIF version

Theorem symgextf 19347
Description: The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf
StepHypRef Expression
1 simplll 774 . . 3 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ 𝑥 = 𝐾) → 𝐾𝑁)
2 simpllr 775 . . . . 5 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑍𝑆)
3 simpr 484 . . . . . . 7 (((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) → 𝑥𝑁)
4 neqne 2933 . . . . . . 7 𝑥 = 𝐾𝑥𝐾)
53, 4anim12i 613 . . . . . 6 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑥𝑁𝑥𝐾))
6 eldifsn 4750 . . . . . 6 (𝑥 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑥𝑁𝑥𝐾))
75, 6sylibr 234 . . . . 5 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑥 ∈ (𝑁 ∖ {𝐾}))
8 eqid 2729 . . . . . 6 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
9 symgext.s . . . . . 6 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
108, 9symgfv 19310 . . . . 5 ((𝑍𝑆𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑍𝑥) ∈ (𝑁 ∖ {𝐾}))
112, 7, 10syl2anc 584 . . . 4 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍𝑥) ∈ (𝑁 ∖ {𝐾}))
1211eldifad 3926 . . 3 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍𝑥) ∈ 𝑁)
131, 12ifclda 4524 . 2 (((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) ∈ 𝑁)
14 symgext.e . 2 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
1513, 14fmptd 7086 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3911  ifcif 4488  {csn 4589  cmpt 5188  wf 6507  cfv 6511  Basecbs 17179  SymGrpcsymg 19299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-efmnd 18796  df-symg 19300
This theorem is referenced by:  symgextf1  19351  symgextfo  19352  symgextres  19355
  Copyright terms: Public domain W3C validator