MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf Structured version   Visualization version   GIF version

Theorem symgextf 18058
Description: The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf
StepHypRef Expression
1 simplll 782 . . 3 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ 𝑥 = 𝐾) → 𝐾𝑁)
2 simpllr 784 . . . . 5 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑍𝑆)
3 simpr 473 . . . . . . 7 (((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) → 𝑥𝑁)
4 df-ne 2990 . . . . . . . 8 (𝑥𝐾 ↔ ¬ 𝑥 = 𝐾)
54biimpri 219 . . . . . . 7 𝑥 = 𝐾𝑥𝐾)
63, 5anim12i 602 . . . . . 6 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑥𝑁𝑥𝐾))
7 eldifsn 4519 . . . . . 6 (𝑥 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑥𝑁𝑥𝐾))
86, 7sylibr 225 . . . . 5 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑥 ∈ (𝑁 ∖ {𝐾}))
9 eqid 2817 . . . . . 6 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
10 symgext.s . . . . . 6 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
119, 10symgfv 18028 . . . . 5 ((𝑍𝑆𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑍𝑥) ∈ (𝑁 ∖ {𝐾}))
122, 8, 11syl2anc 575 . . . 4 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍𝑥) ∈ (𝑁 ∖ {𝐾}))
1312eldifad 3792 . . 3 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍𝑥) ∈ 𝑁)
141, 13ifclda 4324 . 2 (((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) ∈ 𝑁)
15 symgext.e . 2 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
1614, 15fmptd 6616 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1637  wcel 2157  wne 2989  cdif 3777  ifcif 4290  {csn 4381  cmpt 4934  wf 6107  cfv 6111  Basecbs 16088  SymGrpcsymg 18018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-om 7306  df-1st 7408  df-2nd 7409  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-1o 7806  df-oadd 7810  df-er 7989  df-map 8104  df-en 8203  df-dom 8204  df-sdom 8205  df-fin 8206  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-nn 11316  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11580  df-z 11664  df-uz 11925  df-fz 12570  df-struct 16090  df-ndx 16091  df-slot 16092  df-base 16094  df-plusg 16186  df-tset 16192  df-symg 18019
This theorem is referenced by:  symgextf1  18062  symgextfo  18063  symgextres  18066
  Copyright terms: Public domain W3C validator