MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextf Structured version   Visualization version   GIF version

Theorem symgextf 19389
Description: The extension of a permutation, fixing the additional element, is a function. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextf ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextf
StepHypRef Expression
1 simplll 773 . . 3 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ 𝑥 = 𝐾) → 𝐾𝑁)
2 simpllr 774 . . . . 5 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑍𝑆)
3 simpr 483 . . . . . . 7 (((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) → 𝑥𝑁)
4 neqne 2937 . . . . . . 7 𝑥 = 𝐾𝑥𝐾)
53, 4anim12i 611 . . . . . 6 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑥𝑁𝑥𝐾))
6 eldifsn 4792 . . . . . 6 (𝑥 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑥𝑁𝑥𝐾))
75, 6sylibr 233 . . . . 5 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → 𝑥 ∈ (𝑁 ∖ {𝐾}))
8 eqid 2725 . . . . . 6 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
9 symgext.s . . . . . 6 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
108, 9symgfv 19351 . . . . 5 ((𝑍𝑆𝑥 ∈ (𝑁 ∖ {𝐾})) → (𝑍𝑥) ∈ (𝑁 ∖ {𝐾}))
112, 7, 10syl2anc 582 . . . 4 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍𝑥) ∈ (𝑁 ∖ {𝐾}))
1211eldifad 3956 . . 3 ((((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) ∧ ¬ 𝑥 = 𝐾) → (𝑍𝑥) ∈ 𝑁)
131, 12ifclda 4565 . 2 (((𝐾𝑁𝑍𝑆) ∧ 𝑥𝑁) → if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)) ∈ 𝑁)
14 symgext.e . 2 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
1513, 14fmptd 7123 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  cdif 3941  ifcif 4530  {csn 4630  cmpt 5232  wf 6545  cfv 6549  Basecbs 17188  SymGrpcsymg 19338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-tset 17260  df-efmnd 18834  df-symg 19339
This theorem is referenced by:  symgextf1  19393  symgextfo  19394  symgextres  19397
  Copyright terms: Public domain W3C validator