Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tglnne0 | Structured version Visualization version GIF version |
Description: A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
tglnne0.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglnne0.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglnne0.1 | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
Ref | Expression |
---|---|
tglnne0 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2738 | . . . . 5 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
3 | tglnne0.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglnne0.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 726 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | simpllr 772 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (Base‘𝐺)) | |
7 | simplr 765 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ (Base‘𝐺)) | |
8 | simprr 769 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
9 | 1, 2, 3, 5, 6, 7, 8 | tglinerflx1 26898 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦)) |
10 | simprl 767 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 = (𝑥𝐿𝑦)) | |
11 | 9, 10 | eleqtrrd 2842 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐴) |
12 | 11 | ne0d 4266 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 ≠ ∅) |
13 | tglnne0.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
14 | 1, 2, 3, 4, 13 | tgisline 26892 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
15 | 12, 14 | r19.29vva 3263 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 ran crn 5581 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 |
This theorem is referenced by: hpgerlem 27030 |
Copyright terms: Public domain | W3C validator |