Step | Hyp | Ref
| Expression |
1 | | eqid 2730 |
. . . . 5
β’
(BaseβπΊ) =
(BaseβπΊ) |
2 | | eqid 2730 |
. . . . 5
β’
(ItvβπΊ) =
(ItvβπΊ) |
3 | | tglnne0.l |
. . . . 5
β’ πΏ = (LineGβπΊ) |
4 | | tglnne0.g |
. . . . . 6
β’ (π β πΊ β TarskiG) |
5 | 4 | ad3antrrr 726 |
. . . . 5
β’ ((((π β§ π₯ β (BaseβπΊ)) β§ π¦ β (BaseβπΊ)) β§ (π΄ = (π₯πΏπ¦) β§ π₯ β π¦)) β πΊ β TarskiG) |
6 | | simpllr 772 |
. . . . 5
β’ ((((π β§ π₯ β (BaseβπΊ)) β§ π¦ β (BaseβπΊ)) β§ (π΄ = (π₯πΏπ¦) β§ π₯ β π¦)) β π₯ β (BaseβπΊ)) |
7 | | simplr 765 |
. . . . 5
β’ ((((π β§ π₯ β (BaseβπΊ)) β§ π¦ β (BaseβπΊ)) β§ (π΄ = (π₯πΏπ¦) β§ π₯ β π¦)) β π¦ β (BaseβπΊ)) |
8 | | simprr 769 |
. . . . 5
β’ ((((π β§ π₯ β (BaseβπΊ)) β§ π¦ β (BaseβπΊ)) β§ (π΄ = (π₯πΏπ¦) β§ π₯ β π¦)) β π₯ β π¦) |
9 | 1, 2, 3, 5, 6, 7, 8 | tglinerflx1 28151 |
. . . 4
β’ ((((π β§ π₯ β (BaseβπΊ)) β§ π¦ β (BaseβπΊ)) β§ (π΄ = (π₯πΏπ¦) β§ π₯ β π¦)) β π₯ β (π₯πΏπ¦)) |
10 | | simprl 767 |
. . . 4
β’ ((((π β§ π₯ β (BaseβπΊ)) β§ π¦ β (BaseβπΊ)) β§ (π΄ = (π₯πΏπ¦) β§ π₯ β π¦)) β π΄ = (π₯πΏπ¦)) |
11 | 9, 10 | eleqtrrd 2834 |
. . 3
β’ ((((π β§ π₯ β (BaseβπΊ)) β§ π¦ β (BaseβπΊ)) β§ (π΄ = (π₯πΏπ¦) β§ π₯ β π¦)) β π₯ β π΄) |
12 | 11 | ne0d 4334 |
. 2
β’ ((((π β§ π₯ β (BaseβπΊ)) β§ π¦ β (BaseβπΊ)) β§ (π΄ = (π₯πΏπ¦) β§ π₯ β π¦)) β π΄ β β
) |
13 | | tglnne0.1 |
. . 3
β’ (π β π΄ β ran πΏ) |
14 | 1, 2, 3, 4, 13 | tgisline 28145 |
. 2
β’ (π β βπ₯ β (BaseβπΊ)βπ¦ β (BaseβπΊ)(π΄ = (π₯πΏπ¦) β§ π₯ β π¦)) |
15 | 12, 14 | r19.29vva 3211 |
1
β’ (π β π΄ β β
) |