| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnne0 | Structured version Visualization version GIF version | ||
| Description: A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| tglnne0.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglnne0.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglnne0.1 | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| Ref | Expression |
|---|---|
| tglnne0 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
| 3 | tglnne0.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglnne0.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
| 6 | simpllr 775 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (Base‘𝐺)) | |
| 7 | simplr 768 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ (Base‘𝐺)) | |
| 8 | simprr 772 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
| 9 | 1, 2, 3, 5, 6, 7, 8 | tglinerflx1 28617 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦)) |
| 10 | simprl 770 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 = (𝑥𝐿𝑦)) | |
| 11 | 9, 10 | eleqtrrd 2838 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐴) |
| 12 | 11 | ne0d 4322 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 ≠ ∅) |
| 13 | tglnne0.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 14 | 1, 2, 3, 4, 13 | tgisline 28611 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
| 15 | 12, 14 | r19.29vva 3205 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 ran crn 5660 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 |
| This theorem is referenced by: hpgerlem 28749 |
| Copyright terms: Public domain | W3C validator |