MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnne0 Structured version   Visualization version   GIF version

Theorem tglnne0 28624
Description: A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
tglnne0.l 𝐿 = (LineG‘𝐺)
tglnne0.g (𝜑𝐺 ∈ TarskiG)
tglnne0.1 (𝜑𝐴 ∈ ran 𝐿)
Assertion
Ref Expression
tglnne0 (𝜑𝐴 ≠ ∅)

Proof of Theorem tglnne0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2736 . . . . 5 (Itv‘𝐺) = (Itv‘𝐺)
3 tglnne0.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglnne0.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺 ∈ TarskiG)
6 simpllr 775 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (Base‘𝐺))
7 simplr 768 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑦 ∈ (Base‘𝐺))
8 simprr 772 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
91, 2, 3, 5, 6, 7, 8tglinerflx1 28617 . . . 4 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦))
10 simprl 770 . . . 4 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴 = (𝑥𝐿𝑦))
119, 10eleqtrrd 2838 . . 3 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝐴)
1211ne0d 4322 . 2 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴 ≠ ∅)
13 tglnne0.1 . . 3 (𝜑𝐴 ∈ ran 𝐿)
141, 2, 3, 4, 13tgisline 28611 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
1512, 14r19.29vva 3205 1 (𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  c0 4313  ran crn 5660  cfv 6536  (class class class)co 7410  Basecbs 17233  TarskiGcstrkg 28411  Itvcitv 28417  LineGclng 28418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-trkgc 28432  df-trkgb 28433  df-trkgcb 28434  df-trkg 28437
This theorem is referenced by:  hpgerlem  28749
  Copyright terms: Public domain W3C validator