MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnne0 Structured version   Visualization version   GIF version

Theorem tglnne0 28158
Description: A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
tglnne0.l 𝐿 = (LineGβ€˜πΊ)
tglnne0.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tglnne0.1 (πœ‘ β†’ 𝐴 ∈ ran 𝐿)
Assertion
Ref Expression
tglnne0 (πœ‘ β†’ 𝐴 β‰  βˆ…)

Proof of Theorem tglnne0
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 (Baseβ€˜πΊ) = (Baseβ€˜πΊ)
2 eqid 2730 . . . . 5 (Itvβ€˜πΊ) = (Itvβ€˜πΊ)
3 tglnne0.l . . . . 5 𝐿 = (LineGβ€˜πΊ)
4 tglnne0.g . . . . . 6 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54ad3antrrr 726 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑦 ∈ (Baseβ€˜πΊ)) ∧ (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ 𝐺 ∈ TarskiG)
6 simpllr 772 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑦 ∈ (Baseβ€˜πΊ)) ∧ (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ π‘₯ ∈ (Baseβ€˜πΊ))
7 simplr 765 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑦 ∈ (Baseβ€˜πΊ)) ∧ (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ 𝑦 ∈ (Baseβ€˜πΊ))
8 simprr 769 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑦 ∈ (Baseβ€˜πΊ)) ∧ (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ π‘₯ β‰  𝑦)
91, 2, 3, 5, 6, 7, 8tglinerflx1 28151 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑦 ∈ (Baseβ€˜πΊ)) ∧ (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ π‘₯ ∈ (π‘₯𝐿𝑦))
10 simprl 767 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑦 ∈ (Baseβ€˜πΊ)) ∧ (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ 𝐴 = (π‘₯𝐿𝑦))
119, 10eleqtrrd 2834 . . 3 ((((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑦 ∈ (Baseβ€˜πΊ)) ∧ (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ π‘₯ ∈ 𝐴)
1211ne0d 4334 . 2 ((((πœ‘ ∧ π‘₯ ∈ (Baseβ€˜πΊ)) ∧ 𝑦 ∈ (Baseβ€˜πΊ)) ∧ (𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦)) β†’ 𝐴 β‰  βˆ…)
13 tglnne0.1 . . 3 (πœ‘ β†’ 𝐴 ∈ ran 𝐿)
141, 2, 3, 4, 13tgisline 28145 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ (Baseβ€˜πΊ)βˆƒπ‘¦ ∈ (Baseβ€˜πΊ)(𝐴 = (π‘₯𝐿𝑦) ∧ π‘₯ β‰  𝑦))
1512, 14r19.29vva 3211 1 (πœ‘ β†’ 𝐴 β‰  βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ…c0 4321  ran crn 5676  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  TarskiGcstrkg 27945  Itvcitv 27951  LineGclng 27952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-trkgc 27966  df-trkgb 27967  df-trkgcb 27968  df-trkg 27971
This theorem is referenced by:  hpgerlem  28283
  Copyright terms: Public domain W3C validator