| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnne0 | Structured version Visualization version GIF version | ||
| Description: A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| tglnne0.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglnne0.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglnne0.1 | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| Ref | Expression |
|---|---|
| tglnne0 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
| 3 | tglnne0.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglnne0.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
| 6 | simpllr 775 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (Base‘𝐺)) | |
| 7 | simplr 768 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ (Base‘𝐺)) | |
| 8 | simprr 772 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
| 9 | 1, 2, 3, 5, 6, 7, 8 | tglinerflx1 28611 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦)) |
| 10 | simprl 770 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 = (𝑥𝐿𝑦)) | |
| 11 | 9, 10 | eleqtrrd 2834 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐴) |
| 12 | 11 | ne0d 4289 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 ≠ ∅) |
| 13 | tglnne0.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 14 | 1, 2, 3, 4, 13 | tgisline 28605 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
| 15 | 12, 14 | r19.29vva 3192 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 ran crn 5615 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 TarskiGcstrkg 28405 Itvcitv 28411 LineGclng 28412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-trkgc 28426 df-trkgb 28427 df-trkgcb 28428 df-trkg 28431 |
| This theorem is referenced by: hpgerlem 28743 |
| Copyright terms: Public domain | W3C validator |