Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tglnne0 | Structured version Visualization version GIF version |
Description: A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
tglnne0.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglnne0.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglnne0.1 | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
Ref | Expression |
---|---|
tglnne0 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2738 | . . . . 5 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
3 | tglnne0.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglnne0.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 727 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | simpllr 773 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (Base‘𝐺)) | |
7 | simplr 766 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ (Base‘𝐺)) | |
8 | simprr 770 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
9 | 1, 2, 3, 5, 6, 7, 8 | tglinerflx1 26994 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦)) |
10 | simprl 768 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 = (𝑥𝐿𝑦)) | |
11 | 9, 10 | eleqtrrd 2842 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐴) |
12 | 11 | ne0d 4269 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 ≠ ∅) |
13 | tglnne0.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
14 | 1, 2, 3, 4, 13 | tgisline 26988 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
15 | 12, 14 | r19.29vva 3266 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ran crn 5590 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 TarskiGcstrkg 26788 Itvcitv 26794 LineGclng 26795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkg 26814 |
This theorem is referenced by: hpgerlem 27126 |
Copyright terms: Public domain | W3C validator |