MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnne0 Structured version   Visualization version   GIF version

Theorem tglnne0 26982
Description: A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
tglnne0.l 𝐿 = (LineG‘𝐺)
tglnne0.g (𝜑𝐺 ∈ TarskiG)
tglnne0.1 (𝜑𝐴 ∈ ran 𝐿)
Assertion
Ref Expression
tglnne0 (𝜑𝐴 ≠ ∅)

Proof of Theorem tglnne0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2739 . . . . 5 (Itv‘𝐺) = (Itv‘𝐺)
3 tglnne0.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglnne0.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 726 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺 ∈ TarskiG)
6 simpllr 772 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (Base‘𝐺))
7 simplr 765 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑦 ∈ (Base‘𝐺))
8 simprr 769 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
91, 2, 3, 5, 6, 7, 8tglinerflx1 26975 . . . 4 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦))
10 simprl 767 . . . 4 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴 = (𝑥𝐿𝑦))
119, 10eleqtrrd 2843 . . 3 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝐴)
1211ne0d 4274 . 2 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴 ≠ ∅)
13 tglnne0.1 . . 3 (𝜑𝐴 ∈ ran 𝐿)
141, 2, 3, 4, 13tgisline 26969 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
1512, 14r19.29vva 3265 1 (𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wne 2944  c0 4261  ran crn 5589  cfv 6430  (class class class)co 7268  Basecbs 16893  TarskiGcstrkg 26769  Itvcitv 26775  LineGclng 26776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-trkgc 26790  df-trkgb 26791  df-trkgcb 26792  df-trkg 26795
This theorem is referenced by:  hpgerlem  27107
  Copyright terms: Public domain W3C validator