MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnpt2 Structured version   Visualization version   GIF version

Theorem tglnpt2 28667
Description: Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
tglnpt2.p 𝑃 = (Base‘𝐺)
tglnpt2.i 𝐼 = (Itv‘𝐺)
tglnpt2.l 𝐿 = (LineG‘𝐺)
tglnpt2.g (𝜑𝐺 ∈ TarskiG)
tglnpt2.a (𝜑𝐴 ∈ ran 𝐿)
tglnpt2.x (𝜑𝑋𝐴)
Assertion
Ref Expression
tglnpt2 (𝜑 → ∃𝑦𝐴 𝑋𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝐺(𝑦)   𝐼(𝑦)   𝐿(𝑦)

Proof of Theorem tglnpt2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglnpt2.p . . . . . 6 𝑃 = (Base‘𝐺)
2 tglnpt2.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 tglnpt2.l . . . . . 6 𝐿 = (LineG‘𝐺)
4 tglnpt2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54ad4antr 731 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝐺 ∈ TarskiG)
6 simp-4r 783 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑥𝑃)
7 simpllr 775 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧𝑃)
8 simplrr 777 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑥𝑧)
91, 2, 3, 5, 6, 7, 8tglinerflx2 28660 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧 ∈ (𝑥𝐿𝑧))
10 simplrl 776 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝐴 = (𝑥𝐿𝑧))
119, 10eleqtrrd 2847 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧𝐴)
12 simpr 484 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑋 = 𝑥)
1312, 8eqnetrd 3014 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑋𝑧)
14 neeq2 3010 . . . . 5 (𝑦 = 𝑧 → (𝑋𝑦𝑋𝑧))
1514rspcev 3635 . . . 4 ((𝑧𝐴𝑋𝑧) → ∃𝑦𝐴 𝑋𝑦)
1611, 13, 15syl2anc 583 . . 3 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → ∃𝑦𝐴 𝑋𝑦)
174ad4antr 731 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝐺 ∈ TarskiG)
18 simp-4r 783 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝑃)
19 simpllr 775 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑧𝑃)
20 simplrr 777 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝑧)
211, 2, 3, 17, 18, 19, 20tglinerflx1 28659 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥 ∈ (𝑥𝐿𝑧))
22 simplrl 776 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝐴 = (𝑥𝐿𝑧))
2321, 22eleqtrrd 2847 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝐴)
24 simpr 484 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑋𝑥)
25 neeq2 3010 . . . . 5 (𝑦 = 𝑥 → (𝑋𝑦𝑋𝑥))
2625rspcev 3635 . . . 4 ((𝑥𝐴𝑋𝑥) → ∃𝑦𝐴 𝑋𝑦)
2723, 24, 26syl2anc 583 . . 3 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → ∃𝑦𝐴 𝑋𝑦)
2816, 27pm2.61dane 3035 . 2 ((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) → ∃𝑦𝐴 𝑋𝑦)
29 tglnpt2.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
301, 2, 3, 4, 29tgisline 28653 . 2 (𝜑 → ∃𝑥𝑃𝑧𝑃 (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧))
3128, 30r19.29vva 3222 1 (𝜑 → ∃𝑦𝐴 𝑋𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  ran crn 5701  cfv 6573  (class class class)co 7448  Basecbs 17258  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479
This theorem is referenced by:  perpneq  28740  perpdrag  28754  oppperpex  28779  lnperpex  28829
  Copyright terms: Public domain W3C validator