MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnpt2 Structured version   Visualization version   GIF version

Theorem tglnpt2 28604
Description: Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
tglnpt2.p 𝑃 = (Base‘𝐺)
tglnpt2.i 𝐼 = (Itv‘𝐺)
tglnpt2.l 𝐿 = (LineG‘𝐺)
tglnpt2.g (𝜑𝐺 ∈ TarskiG)
tglnpt2.a (𝜑𝐴 ∈ ran 𝐿)
tglnpt2.x (𝜑𝑋𝐴)
Assertion
Ref Expression
tglnpt2 (𝜑 → ∃𝑦𝐴 𝑋𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝐺(𝑦)   𝐼(𝑦)   𝐿(𝑦)

Proof of Theorem tglnpt2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglnpt2.p . . . . . 6 𝑃 = (Base‘𝐺)
2 tglnpt2.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 tglnpt2.l . . . . . 6 𝐿 = (LineG‘𝐺)
4 tglnpt2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝐺 ∈ TarskiG)
6 simp-4r 783 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑥𝑃)
7 simpllr 775 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧𝑃)
8 simplrr 777 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑥𝑧)
91, 2, 3, 5, 6, 7, 8tglinerflx2 28597 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧 ∈ (𝑥𝐿𝑧))
10 simplrl 776 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝐴 = (𝑥𝐿𝑧))
119, 10eleqtrrd 2831 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧𝐴)
12 simpr 484 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑋 = 𝑥)
1312, 8eqnetrd 2992 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑋𝑧)
14 neeq2 2988 . . . . 5 (𝑦 = 𝑧 → (𝑋𝑦𝑋𝑧))
1514rspcev 3579 . . . 4 ((𝑧𝐴𝑋𝑧) → ∃𝑦𝐴 𝑋𝑦)
1611, 13, 15syl2anc 584 . . 3 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → ∃𝑦𝐴 𝑋𝑦)
174ad4antr 732 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝐺 ∈ TarskiG)
18 simp-4r 783 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝑃)
19 simpllr 775 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑧𝑃)
20 simplrr 777 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝑧)
211, 2, 3, 17, 18, 19, 20tglinerflx1 28596 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥 ∈ (𝑥𝐿𝑧))
22 simplrl 776 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝐴 = (𝑥𝐿𝑧))
2321, 22eleqtrrd 2831 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝐴)
24 simpr 484 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑋𝑥)
25 neeq2 2988 . . . . 5 (𝑦 = 𝑥 → (𝑋𝑦𝑋𝑥))
2625rspcev 3579 . . . 4 ((𝑥𝐴𝑋𝑥) → ∃𝑦𝐴 𝑋𝑦)
2723, 24, 26syl2anc 584 . . 3 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → ∃𝑦𝐴 𝑋𝑦)
2816, 27pm2.61dane 3012 . 2 ((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) → ∃𝑦𝐴 𝑋𝑦)
29 tglnpt2.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
301, 2, 3, 4, 29tgisline 28590 . 2 (𝜑 → ∃𝑥𝑃𝑧𝑃 (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧))
3128, 30r19.29vva 3189 1 (𝜑 → ∃𝑦𝐴 𝑋𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  ran crn 5624  cfv 6486  (class class class)co 7353  Basecbs 17138  TarskiGcstrkg 28390  Itvcitv 28396  LineGclng 28397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-trkgc 28411  df-trkgb 28412  df-trkgcb 28413  df-trkg 28416
This theorem is referenced by:  perpneq  28677  perpdrag  28691  oppperpex  28716  lnperpex  28766
  Copyright terms: Public domain W3C validator