MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnpt2 Structured version   Visualization version   GIF version

Theorem tglnpt2 27583
Description: Find a second point on a line. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
tglnpt2.p 𝑃 = (Base‘𝐺)
tglnpt2.i 𝐼 = (Itv‘𝐺)
tglnpt2.l 𝐿 = (LineG‘𝐺)
tglnpt2.g (𝜑𝐺 ∈ TarskiG)
tglnpt2.a (𝜑𝐴 ∈ ran 𝐿)
tglnpt2.x (𝜑𝑋𝐴)
Assertion
Ref Expression
tglnpt2 (𝜑 → ∃𝑦𝐴 𝑋𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝐺(𝑦)   𝐼(𝑦)   𝐿(𝑦)

Proof of Theorem tglnpt2
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglnpt2.p . . . . . 6 𝑃 = (Base‘𝐺)
2 tglnpt2.i . . . . . 6 𝐼 = (Itv‘𝐺)
3 tglnpt2.l . . . . . 6 𝐿 = (LineG‘𝐺)
4 tglnpt2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝐺 ∈ TarskiG)
6 simp-4r 782 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑥𝑃)
7 simpllr 774 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧𝑃)
8 simplrr 776 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑥𝑧)
91, 2, 3, 5, 6, 7, 8tglinerflx2 27576 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧 ∈ (𝑥𝐿𝑧))
10 simplrl 775 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝐴 = (𝑥𝐿𝑧))
119, 10eleqtrrd 2841 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑧𝐴)
12 simpr 485 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑋 = 𝑥)
1312, 8eqnetrd 3011 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → 𝑋𝑧)
14 neeq2 3007 . . . . 5 (𝑦 = 𝑧 → (𝑋𝑦𝑋𝑧))
1514rspcev 3581 . . . 4 ((𝑧𝐴𝑋𝑧) → ∃𝑦𝐴 𝑋𝑦)
1611, 13, 15syl2anc 584 . . 3 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋 = 𝑥) → ∃𝑦𝐴 𝑋𝑦)
174ad4antr 730 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝐺 ∈ TarskiG)
18 simp-4r 782 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝑃)
19 simpllr 774 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑧𝑃)
20 simplrr 776 . . . . . 6 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝑧)
211, 2, 3, 17, 18, 19, 20tglinerflx1 27575 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥 ∈ (𝑥𝐿𝑧))
22 simplrl 775 . . . . 5 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝐴 = (𝑥𝐿𝑧))
2321, 22eleqtrrd 2841 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑥𝐴)
24 simpr 485 . . . 4 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → 𝑋𝑥)
25 neeq2 3007 . . . . 5 (𝑦 = 𝑥 → (𝑋𝑦𝑋𝑥))
2625rspcev 3581 . . . 4 ((𝑥𝐴𝑋𝑥) → ∃𝑦𝐴 𝑋𝑦)
2723, 24, 26syl2anc 584 . . 3 (((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) ∧ 𝑋𝑥) → ∃𝑦𝐴 𝑋𝑦)
2816, 27pm2.61dane 3032 . 2 ((((𝜑𝑥𝑃) ∧ 𝑧𝑃) ∧ (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧)) → ∃𝑦𝐴 𝑋𝑦)
29 tglnpt2.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
301, 2, 3, 4, 29tgisline 27569 . 2 (𝜑 → ∃𝑥𝑃𝑧𝑃 (𝐴 = (𝑥𝐿𝑧) ∧ 𝑥𝑧))
3128, 30r19.29vva 3207 1 (𝜑 → ∃𝑦𝐴 𝑋𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  ran crn 5634  cfv 6496  (class class class)co 7357  Basecbs 17083  TarskiGcstrkg 27369  Itvcitv 27375  LineGclng 27376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkg 27395
This theorem is referenced by:  perpneq  27656  perpdrag  27670  oppperpex  27695  lnperpex  27745
  Copyright terms: Public domain W3C validator