MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem21 Structured version   Visualization version   GIF version

Theorem yonedalem21 18259
Description: Lemma for yoneda 18269. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y π‘Œ = (Yonβ€˜πΆ)
yoneda.b 𝐡 = (Baseβ€˜πΆ)
yoneda.1 1 = (Idβ€˜πΆ)
yoneda.o 𝑂 = (oppCatβ€˜πΆ)
yoneda.s 𝑆 = (SetCatβ€˜π‘ˆ)
yoneda.t 𝑇 = (SetCatβ€˜π‘‰)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomFβ€˜π‘„)
yoneda.r 𝑅 = ((𝑄 Γ—c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (πœ‘ β†’ 𝐢 ∈ Cat)
yoneda.w (πœ‘ β†’ 𝑉 ∈ π‘Š)
yoneda.u (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
yoneda.v (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
yonedalem21.f (πœ‘ β†’ 𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
Assertion
Ref Expression
yonedalem21 (πœ‘ β†’ (𝐹(1st β€˜π‘)𝑋) = (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹))

Proof of Theorem yonedalem21
StepHypRef Expression
1 yoneda.z . . . . . 6 𝑍 = (𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
21fveq2i 6893 . . . . 5 (1st β€˜π‘) = (1st β€˜(𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))
32oveqi 7426 . . . 4 (𝐹(1st β€˜π‘)𝑋) = (𝐹(1st β€˜(𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))𝑋)
4 df-ov 7416 . . . 4 (𝐹(1st β€˜(𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))𝑋) = ((1st β€˜(𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))β€˜βŸ¨πΉ, π‘‹βŸ©)
53, 4eqtri 2753 . . 3 (𝐹(1st β€˜π‘)𝑋) = ((1st β€˜(𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))β€˜βŸ¨πΉ, π‘‹βŸ©)
6 eqid 2725 . . . . 5 (𝑄 Γ—c 𝑂) = (𝑄 Γ—c 𝑂)
7 yoneda.q . . . . . 6 𝑄 = (𝑂 FuncCat 𝑆)
87fucbas 17945 . . . . 5 (𝑂 Func 𝑆) = (Baseβ€˜π‘„)
9 yoneda.o . . . . . 6 𝑂 = (oppCatβ€˜πΆ)
10 yoneda.b . . . . . 6 𝐡 = (Baseβ€˜πΆ)
119, 10oppcbas 17693 . . . . 5 𝐡 = (Baseβ€˜π‘‚)
126, 8, 11xpcbas 18163 . . . 4 ((𝑂 Func 𝑆) Γ— 𝐡) = (Baseβ€˜(𝑄 Γ—c 𝑂))
13 eqid 2725 . . . . 5 ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) = ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))
14 eqid 2725 . . . . 5 ((oppCatβ€˜π‘„) Γ—c 𝑄) = ((oppCatβ€˜π‘„) Γ—c 𝑄)
15 yoneda.c . . . . . . . . 9 (πœ‘ β†’ 𝐢 ∈ Cat)
169oppccat 17698 . . . . . . . . 9 (𝐢 ∈ Cat β†’ 𝑂 ∈ Cat)
1715, 16syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑂 ∈ Cat)
18 yoneda.w . . . . . . . . . 10 (πœ‘ β†’ 𝑉 ∈ π‘Š)
19 yoneda.v . . . . . . . . . . 11 (πœ‘ β†’ (ran (Homf β€˜π‘„) βˆͺ π‘ˆ) βŠ† 𝑉)
2019unssbd 4183 . . . . . . . . . 10 (πœ‘ β†’ π‘ˆ βŠ† 𝑉)
2118, 20ssexd 5320 . . . . . . . . 9 (πœ‘ β†’ π‘ˆ ∈ V)
22 yoneda.s . . . . . . . . . 10 𝑆 = (SetCatβ€˜π‘ˆ)
2322setccat 18068 . . . . . . . . 9 (π‘ˆ ∈ V β†’ 𝑆 ∈ Cat)
2421, 23syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑆 ∈ Cat)
257, 17, 24fuccat 17956 . . . . . . 7 (πœ‘ β†’ 𝑄 ∈ Cat)
26 eqid 2725 . . . . . . 7 (𝑄 2ndF 𝑂) = (𝑄 2ndF 𝑂)
276, 25, 17, 262ndfcl 18183 . . . . . 6 (πœ‘ β†’ (𝑄 2ndF 𝑂) ∈ ((𝑄 Γ—c 𝑂) Func 𝑂))
28 eqid 2725 . . . . . . . 8 (oppCatβ€˜π‘„) = (oppCatβ€˜π‘„)
29 relfunc 17842 . . . . . . . . 9 Rel (𝐢 Func 𝑄)
30 yoneda.y . . . . . . . . . 10 π‘Œ = (Yonβ€˜πΆ)
31 yoneda.u . . . . . . . . . 10 (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† π‘ˆ)
3230, 15, 9, 22, 7, 21, 31yoncl 18248 . . . . . . . . 9 (πœ‘ β†’ π‘Œ ∈ (𝐢 Func 𝑄))
33 1st2ndbr 8040 . . . . . . . . 9 ((Rel (𝐢 Func 𝑄) ∧ π‘Œ ∈ (𝐢 Func 𝑄)) β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
3429, 32, 33sylancr 585 . . . . . . . 8 (πœ‘ β†’ (1st β€˜π‘Œ)(𝐢 Func 𝑄)(2nd β€˜π‘Œ))
359, 28, 34funcoppc 17855 . . . . . . 7 (πœ‘ β†’ (1st β€˜π‘Œ)(𝑂 Func (oppCatβ€˜π‘„))tpos (2nd β€˜π‘Œ))
36 df-br 5145 . . . . . . 7 ((1st β€˜π‘Œ)(𝑂 Func (oppCatβ€˜π‘„))tpos (2nd β€˜π‘Œ) ↔ ⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∈ (𝑂 Func (oppCatβ€˜π‘„)))
3735, 36sylib 217 . . . . . 6 (πœ‘ β†’ ⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∈ (𝑂 Func (oppCatβ€˜π‘„)))
3827, 37cofucl 17868 . . . . 5 (πœ‘ β†’ (⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ∈ ((𝑄 Γ—c 𝑂) Func (oppCatβ€˜π‘„)))
39 eqid 2725 . . . . . 6 (𝑄 1stF 𝑂) = (𝑄 1stF 𝑂)
406, 25, 17, 391stfcl 18182 . . . . 5 (πœ‘ β†’ (𝑄 1stF 𝑂) ∈ ((𝑄 Γ—c 𝑂) Func 𝑄))
4113, 14, 38, 40prfcl 18188 . . . 4 (πœ‘ β†’ ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) ∈ ((𝑄 Γ—c 𝑂) Func ((oppCatβ€˜π‘„) Γ—c 𝑄)))
42 yoneda.h . . . . 5 𝐻 = (HomFβ€˜π‘„)
43 yoneda.t . . . . 5 𝑇 = (SetCatβ€˜π‘‰)
4419unssad 4182 . . . . 5 (πœ‘ β†’ ran (Homf β€˜π‘„) βŠ† 𝑉)
4542, 28, 43, 25, 18, 44hofcl 18245 . . . 4 (πœ‘ β†’ 𝐻 ∈ (((oppCatβ€˜π‘„) Γ—c 𝑄) Func 𝑇))
46 yonedalem21.f . . . . 5 (πœ‘ β†’ 𝐹 ∈ (𝑂 Func 𝑆))
47 yonedalem21.x . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐡)
4846, 47opelxpd 5712 . . . 4 (πœ‘ β†’ ⟨𝐹, π‘‹βŸ© ∈ ((𝑂 Func 𝑆) Γ— 𝐡))
4912, 41, 45, 48cofu1 17864 . . 3 (πœ‘ β†’ ((1st β€˜(𝐻 ∘func ((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))β€˜βŸ¨πΉ, π‘‹βŸ©) = ((1st β€˜π»)β€˜((1st β€˜((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))β€˜βŸ¨πΉ, π‘‹βŸ©)))
505, 49eqtrid 2777 . 2 (πœ‘ β†’ (𝐹(1st β€˜π‘)𝑋) = ((1st β€˜π»)β€˜((1st β€˜((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))β€˜βŸ¨πΉ, π‘‹βŸ©)))
51 eqid 2725 . . . . . 6 (Hom β€˜(𝑄 Γ—c 𝑂)) = (Hom β€˜(𝑄 Γ—c 𝑂))
5213, 12, 51, 38, 40, 48prf1 18185 . . . . 5 (πœ‘ β†’ ((1st β€˜((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))β€˜βŸ¨πΉ, π‘‹βŸ©) = ⟨((1st β€˜(⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)))β€˜βŸ¨πΉ, π‘‹βŸ©), ((1st β€˜(𝑄 1stF 𝑂))β€˜βŸ¨πΉ, π‘‹βŸ©)⟩)
5312, 27, 37, 48cofu1 17864 . . . . . . 7 (πœ‘ β†’ ((1st β€˜(⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)))β€˜βŸ¨πΉ, π‘‹βŸ©) = ((1st β€˜βŸ¨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩)β€˜((1st β€˜(𝑄 2ndF 𝑂))β€˜βŸ¨πΉ, π‘‹βŸ©)))
54 fvex 6903 . . . . . . . . . 10 (1st β€˜π‘Œ) ∈ V
55 fvex 6903 . . . . . . . . . . 11 (2nd β€˜π‘Œ) ∈ V
5655tposex 8259 . . . . . . . . . 10 tpos (2nd β€˜π‘Œ) ∈ V
5754, 56op1st 7995 . . . . . . . . 9 (1st β€˜βŸ¨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩) = (1st β€˜π‘Œ)
5857a1i 11 . . . . . . . 8 (πœ‘ β†’ (1st β€˜βŸ¨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩) = (1st β€˜π‘Œ))
596, 12, 51, 25, 17, 26, 482ndf1 18180 . . . . . . . . 9 (πœ‘ β†’ ((1st β€˜(𝑄 2ndF 𝑂))β€˜βŸ¨πΉ, π‘‹βŸ©) = (2nd β€˜βŸ¨πΉ, π‘‹βŸ©))
60 op2ndg 8000 . . . . . . . . . 10 ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋 ∈ 𝐡) β†’ (2nd β€˜βŸ¨πΉ, π‘‹βŸ©) = 𝑋)
6146, 47, 60syl2anc 582 . . . . . . . . 9 (πœ‘ β†’ (2nd β€˜βŸ¨πΉ, π‘‹βŸ©) = 𝑋)
6259, 61eqtrd 2765 . . . . . . . 8 (πœ‘ β†’ ((1st β€˜(𝑄 2ndF 𝑂))β€˜βŸ¨πΉ, π‘‹βŸ©) = 𝑋)
6358, 62fveq12d 6897 . . . . . . 7 (πœ‘ β†’ ((1st β€˜βŸ¨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩)β€˜((1st β€˜(𝑄 2ndF 𝑂))β€˜βŸ¨πΉ, π‘‹βŸ©)) = ((1st β€˜π‘Œ)β€˜π‘‹))
6453, 63eqtrd 2765 . . . . . 6 (πœ‘ β†’ ((1st β€˜(⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)))β€˜βŸ¨πΉ, π‘‹βŸ©) = ((1st β€˜π‘Œ)β€˜π‘‹))
656, 12, 51, 25, 17, 39, 481stf1 18177 . . . . . . 7 (πœ‘ β†’ ((1st β€˜(𝑄 1stF 𝑂))β€˜βŸ¨πΉ, π‘‹βŸ©) = (1st β€˜βŸ¨πΉ, π‘‹βŸ©))
66 op1stg 7999 . . . . . . . 8 ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋 ∈ 𝐡) β†’ (1st β€˜βŸ¨πΉ, π‘‹βŸ©) = 𝐹)
6746, 47, 66syl2anc 582 . . . . . . 7 (πœ‘ β†’ (1st β€˜βŸ¨πΉ, π‘‹βŸ©) = 𝐹)
6865, 67eqtrd 2765 . . . . . 6 (πœ‘ β†’ ((1st β€˜(𝑄 1stF 𝑂))β€˜βŸ¨πΉ, π‘‹βŸ©) = 𝐹)
6964, 68opeq12d 4878 . . . . 5 (πœ‘ β†’ ⟨((1st β€˜(⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)))β€˜βŸ¨πΉ, π‘‹βŸ©), ((1st β€˜(𝑄 1stF 𝑂))β€˜βŸ¨πΉ, π‘‹βŸ©)⟩ = ⟨((1st β€˜π‘Œ)β€˜π‘‹), 𝐹⟩)
7052, 69eqtrd 2765 . . . 4 (πœ‘ β†’ ((1st β€˜((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))β€˜βŸ¨πΉ, π‘‹βŸ©) = ⟨((1st β€˜π‘Œ)β€˜π‘‹), 𝐹⟩)
7170fveq2d 6894 . . 3 (πœ‘ β†’ ((1st β€˜π»)β€˜((1st β€˜((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))β€˜βŸ¨πΉ, π‘‹βŸ©)) = ((1st β€˜π»)β€˜βŸ¨((1st β€˜π‘Œ)β€˜π‘‹), 𝐹⟩))
72 df-ov 7416 . . 3 (((1st β€˜π‘Œ)β€˜π‘‹)(1st β€˜π»)𝐹) = ((1st β€˜π»)β€˜βŸ¨((1st β€˜π‘Œ)β€˜π‘‹), 𝐹⟩)
7371, 72eqtr4di 2783 . 2 (πœ‘ β†’ ((1st β€˜π»)β€˜((1st β€˜((⟨(1st β€˜π‘Œ), tpos (2nd β€˜π‘Œ)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))β€˜βŸ¨πΉ, π‘‹βŸ©)) = (((1st β€˜π‘Œ)β€˜π‘‹)(1st β€˜π»)𝐹))
74 eqid 2725 . . . 4 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
757, 74fuchom 17946 . . 3 (𝑂 Nat 𝑆) = (Hom β€˜π‘„)
7630, 10, 15, 47, 9, 22, 21, 31yon1cl 18249 . . 3 (πœ‘ β†’ ((1st β€˜π‘Œ)β€˜π‘‹) ∈ (𝑂 Func 𝑆))
7742, 25, 8, 75, 76, 46hof1 18240 . 2 (πœ‘ β†’ (((1st β€˜π‘Œ)β€˜π‘‹)(1st β€˜π»)𝐹) = (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹))
7850, 73, 773eqtrd 2769 1 (πœ‘ β†’ (𝐹(1st β€˜π‘)𝑋) = (((1st β€˜π‘Œ)β€˜π‘‹)(𝑂 Nat 𝑆)𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3463   βˆͺ cun 3939   βŠ† wss 3941  βŸ¨cop 4631   class class class wbr 5144   Γ— cxp 5671  ran crn 5674  Rel wrel 5678  β€˜cfv 6543  (class class class)co 7413  1st c1st 7985  2nd c2nd 7986  tpos ctpos 8224  Basecbs 17174  Hom chom 17238  Catccat 17638  Idccid 17639  Homf chomf 17640  oppCatcoppc 17685   Func cfunc 17834   ∘func ccofu 17836   Nat cnat 17925   FuncCat cfuc 17926  SetCatcsetc 18058   Γ—c cxpc 18153   1stF c1stf 18154   2ndF c2ndf 18155   ⟨,⟩F cprf 18156   evalF cevlf 18195  HomFchof 18234  Yoncyon 18235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-hom 17251  df-cco 17252  df-cat 17642  df-cid 17643  df-homf 17644  df-comf 17645  df-oppc 17686  df-func 17838  df-cofu 17840  df-nat 17927  df-fuc 17928  df-setc 18059  df-xpc 18157  df-1stf 18158  df-2ndf 18159  df-prf 18160  df-curf 18200  df-hof 18236  df-yon 18237
This theorem is referenced by:  yonedalem3a  18260  yonedalem3b  18265  yonedainv  18267  yonffthlem  18268
  Copyright terms: Public domain W3C validator