MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem22 Structured version   Visualization version   GIF version

Theorem yonedalem22 17607
Description: Lemma for yoneda 17612. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem22.g (𝜑𝐺 ∈ (𝑂 Func 𝑆))
yonedalem22.p (𝜑𝑃𝐵)
yonedalem22.a (𝜑𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
yonedalem22.k (𝜑𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
Assertion
Ref Expression
yonedalem22 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴))

Proof of Theorem yonedalem22
StepHypRef Expression
1 yoneda.z . . . . . . 7 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
21fveq2i 6666 . . . . . 6 (2nd𝑍) = (2nd ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))
32oveqi 7169 . . . . 5 (⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩) = (⟨𝐹, 𝑋⟩(2nd ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))⟨𝐺, 𝑃⟩)
43oveqi 7169 . . . 4 (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (𝐴(⟨𝐹, 𝑋⟩(2nd ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))⟨𝐺, 𝑃⟩)𝐾)
5 df-ov 7159 . . . 4 (𝐴(⟨𝐹, 𝑋⟩(2nd ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))⟨𝐺, 𝑃⟩)𝐾) = ((⟨𝐹, 𝑋⟩(2nd ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩)
64, 5eqtri 2781 . . 3 (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = ((⟨𝐹, 𝑋⟩(2nd ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩)
7 eqid 2758 . . . . 5 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
8 yoneda.q . . . . . 6 𝑄 = (𝑂 FuncCat 𝑆)
98fucbas 17302 . . . . 5 (𝑂 Func 𝑆) = (Base‘𝑄)
10 yoneda.o . . . . . 6 𝑂 = (oppCat‘𝐶)
11 yoneda.b . . . . . 6 𝐵 = (Base‘𝐶)
1210, 11oppcbas 17059 . . . . 5 𝐵 = (Base‘𝑂)
137, 9, 12xpcbas 17507 . . . 4 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
14 eqid 2758 . . . . 5 ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) = ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))
15 eqid 2758 . . . . 5 ((oppCat‘𝑄) ×c 𝑄) = ((oppCat‘𝑄) ×c 𝑄)
16 yoneda.c . . . . . . . . 9 (𝜑𝐶 ∈ Cat)
1710oppccat 17063 . . . . . . . . 9 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
1816, 17syl 17 . . . . . . . 8 (𝜑𝑂 ∈ Cat)
19 yoneda.w . . . . . . . . . 10 (𝜑𝑉𝑊)
20 yoneda.v . . . . . . . . . . 11 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2120unssbd 4095 . . . . . . . . . 10 (𝜑𝑈𝑉)
2219, 21ssexd 5198 . . . . . . . . 9 (𝜑𝑈 ∈ V)
23 yoneda.s . . . . . . . . . 10 𝑆 = (SetCat‘𝑈)
2423setccat 17424 . . . . . . . . 9 (𝑈 ∈ V → 𝑆 ∈ Cat)
2522, 24syl 17 . . . . . . . 8 (𝜑𝑆 ∈ Cat)
268, 18, 25fuccat 17312 . . . . . . 7 (𝜑𝑄 ∈ Cat)
27 eqid 2758 . . . . . . 7 (𝑄 2ndF 𝑂) = (𝑄 2ndF 𝑂)
287, 26, 18, 272ndfcl 17527 . . . . . 6 (𝜑 → (𝑄 2ndF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑂))
29 eqid 2758 . . . . . . . 8 (oppCat‘𝑄) = (oppCat‘𝑄)
30 relfunc 17204 . . . . . . . . 9 Rel (𝐶 Func 𝑄)
31 yoneda.y . . . . . . . . . 10 𝑌 = (Yon‘𝐶)
32 yoneda.u . . . . . . . . . 10 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
3331, 16, 10, 23, 8, 22, 32yoncl 17591 . . . . . . . . 9 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
34 1st2ndbr 7751 . . . . . . . . 9 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
3530, 33, 34sylancr 590 . . . . . . . 8 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
3610, 29, 35funcoppc 17217 . . . . . . 7 (𝜑 → (1st𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd𝑌))
37 df-br 5037 . . . . . . 7 ((1st𝑌)(𝑂 Func (oppCat‘𝑄))tpos (2nd𝑌) ↔ ⟨(1st𝑌), tpos (2nd𝑌)⟩ ∈ (𝑂 Func (oppCat‘𝑄)))
3836, 37sylib 221 . . . . . 6 (𝜑 → ⟨(1st𝑌), tpos (2nd𝑌)⟩ ∈ (𝑂 Func (oppCat‘𝑄)))
3928, 38cofucl 17230 . . . . 5 (𝜑 → (⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func (oppCat‘𝑄)))
40 eqid 2758 . . . . . 6 (𝑄 1stF 𝑂) = (𝑄 1stF 𝑂)
417, 26, 18, 401stfcl 17526 . . . . 5 (𝜑 → (𝑄 1stF 𝑂) ∈ ((𝑄 ×c 𝑂) Func 𝑄))
4214, 15, 39, 41prfcl 17532 . . . 4 (𝜑 → ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)) ∈ ((𝑄 ×c 𝑂) Func ((oppCat‘𝑄) ×c 𝑄)))
43 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
44 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
4520unssad 4094 . . . . 5 (𝜑 → ran (Homf𝑄) ⊆ 𝑉)
4643, 29, 44, 26, 19, 45hofcl 17588 . . . 4 (𝜑𝐻 ∈ (((oppCat‘𝑄) ×c 𝑄) Func 𝑇))
47 yonedalem21.f . . . . 5 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
48 yonedalem21.x . . . . 5 (𝜑𝑋𝐵)
4947, 48opelxpd 5566 . . . 4 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
50 yonedalem22.g . . . . 5 (𝜑𝐺 ∈ (𝑂 Func 𝑆))
51 yonedalem22.p . . . . 5 (𝜑𝑃𝐵)
5250, 51opelxpd 5566 . . . 4 (𝜑 → ⟨𝐺, 𝑃⟩ ∈ ((𝑂 Func 𝑆) × 𝐵))
53 eqid 2758 . . . 4 (Hom ‘(𝑄 ×c 𝑂)) = (Hom ‘(𝑄 ×c 𝑂))
54 yonedalem22.a . . . . . 6 (𝜑𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺))
55 yonedalem22.k . . . . . . 7 (𝜑𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋))
56 eqid 2758 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
5756, 10oppchom 17056 . . . . . . 7 (𝑋(Hom ‘𝑂)𝑃) = (𝑃(Hom ‘𝐶)𝑋)
5855, 57eleqtrrdi 2863 . . . . . 6 (𝜑𝐾 ∈ (𝑋(Hom ‘𝑂)𝑃))
5954, 58opelxpd 5566 . . . . 5 (𝜑 → ⟨𝐴, 𝐾⟩ ∈ ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑋(Hom ‘𝑂)𝑃)))
60 eqid 2758 . . . . . . 7 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
618, 60fuchom 17303 . . . . . 6 (𝑂 Nat 𝑆) = (Hom ‘𝑄)
62 eqid 2758 . . . . . 6 (Hom ‘𝑂) = (Hom ‘𝑂)
637, 9, 12, 61, 62, 47, 48, 50, 51, 53xpchom2 17515 . . . . 5 (𝜑 → (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩) = ((𝐹(𝑂 Nat 𝑆)𝐺) × (𝑋(Hom ‘𝑂)𝑃)))
6459, 63eleqtrrd 2855 . . . 4 (𝜑 → ⟨𝐴, 𝐾⟩ ∈ (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩))
6513, 42, 46, 49, 52, 53, 64cofu2 17228 . . 3 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd ‘(𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩) = ((((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩)(2nd𝐻)((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐺, 𝑃⟩))‘((⟨𝐹, 𝑋⟩(2nd ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩)))
666, 65syl5eq 2805 . 2 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = ((((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩)(2nd𝐻)((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐺, 𝑃⟩))‘((⟨𝐹, 𝑋⟩(2nd ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩)))
6714, 13, 53, 39, 41, 49prf1 17529 . . . . . 6 (𝜑 → ((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩) = ⟨((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐹, 𝑋⟩), ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐹, 𝑋⟩)⟩)
6813, 28, 38, 49cofu1 17226 . . . . . . . 8 (𝜑 → ((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐹, 𝑋⟩) = ((1st ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)‘((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)))
69 fvex 6676 . . . . . . . . . . 11 (1st𝑌) ∈ V
70 fvex 6676 . . . . . . . . . . . 12 (2nd𝑌) ∈ V
7170tposex 7942 . . . . . . . . . . 11 tpos (2nd𝑌) ∈ V
7269, 71op1st 7707 . . . . . . . . . 10 (1st ‘⟨(1st𝑌), tpos (2nd𝑌)⟩) = (1st𝑌)
7372a1i 11 . . . . . . . . 9 (𝜑 → (1st ‘⟨(1st𝑌), tpos (2nd𝑌)⟩) = (1st𝑌))
747, 13, 53, 26, 18, 27, 492ndf1 17524 . . . . . . . . . 10 (𝜑 → ((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩) = (2nd ‘⟨𝐹, 𝑋⟩))
75 op2ndg 7712 . . . . . . . . . . 11 ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋𝐵) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
7647, 48, 75syl2anc 587 . . . . . . . . . 10 (𝜑 → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
7774, 76eqtrd 2793 . . . . . . . . 9 (𝜑 → ((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩) = 𝑋)
7873, 77fveq12d 6670 . . . . . . . 8 (𝜑 → ((1st ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)‘((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)) = ((1st𝑌)‘𝑋))
7968, 78eqtrd 2793 . . . . . . 7 (𝜑 → ((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐹, 𝑋⟩) = ((1st𝑌)‘𝑋))
807, 13, 53, 26, 18, 40, 491stf1 17521 . . . . . . . 8 (𝜑 → ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐹, 𝑋⟩) = (1st ‘⟨𝐹, 𝑋⟩))
81 op1stg 7711 . . . . . . . . 9 ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋𝐵) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
8247, 48, 81syl2anc 587 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
8380, 82eqtrd 2793 . . . . . . 7 (𝜑 → ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐹, 𝑋⟩) = 𝐹)
8479, 83opeq12d 4774 . . . . . 6 (𝜑 → ⟨((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐹, 𝑋⟩), ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐹, 𝑋⟩)⟩ = ⟨((1st𝑌)‘𝑋), 𝐹⟩)
8567, 84eqtrd 2793 . . . . 5 (𝜑 → ((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩) = ⟨((1st𝑌)‘𝑋), 𝐹⟩)
8614, 13, 53, 39, 41, 52prf1 17529 . . . . . 6 (𝜑 → ((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐺, 𝑃⟩) = ⟨((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐺, 𝑃⟩), ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐺, 𝑃⟩)⟩)
8713, 28, 38, 52cofu1 17226 . . . . . . . 8 (𝜑 → ((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐺, 𝑃⟩) = ((1st ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)‘((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩)))
887, 13, 53, 26, 18, 27, 522ndf1 17524 . . . . . . . . . 10 (𝜑 → ((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩) = (2nd ‘⟨𝐺, 𝑃⟩))
89 op2ndg 7712 . . . . . . . . . . 11 ((𝐺 ∈ (𝑂 Func 𝑆) ∧ 𝑃𝐵) → (2nd ‘⟨𝐺, 𝑃⟩) = 𝑃)
9050, 51, 89syl2anc 587 . . . . . . . . . 10 (𝜑 → (2nd ‘⟨𝐺, 𝑃⟩) = 𝑃)
9188, 90eqtrd 2793 . . . . . . . . 9 (𝜑 → ((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩) = 𝑃)
9273, 91fveq12d 6670 . . . . . . . 8 (𝜑 → ((1st ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)‘((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩)) = ((1st𝑌)‘𝑃))
9387, 92eqtrd 2793 . . . . . . 7 (𝜑 → ((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐺, 𝑃⟩) = ((1st𝑌)‘𝑃))
947, 13, 53, 26, 18, 40, 521stf1 17521 . . . . . . . 8 (𝜑 → ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐺, 𝑃⟩) = (1st ‘⟨𝐺, 𝑃⟩))
95 op1stg 7711 . . . . . . . . 9 ((𝐺 ∈ (𝑂 Func 𝑆) ∧ 𝑃𝐵) → (1st ‘⟨𝐺, 𝑃⟩) = 𝐺)
9650, 51, 95syl2anc 587 . . . . . . . 8 (𝜑 → (1st ‘⟨𝐺, 𝑃⟩) = 𝐺)
9794, 96eqtrd 2793 . . . . . . 7 (𝜑 → ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐺, 𝑃⟩) = 𝐺)
9893, 97opeq12d 4774 . . . . . 6 (𝜑 → ⟨((1st ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))‘⟨𝐺, 𝑃⟩), ((1st ‘(𝑄 1stF 𝑂))‘⟨𝐺, 𝑃⟩)⟩ = ⟨((1st𝑌)‘𝑃), 𝐺⟩)
9986, 98eqtrd 2793 . . . . 5 (𝜑 → ((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐺, 𝑃⟩) = ⟨((1st𝑌)‘𝑃), 𝐺⟩)
10085, 99oveq12d 7174 . . . 4 (𝜑 → (((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩)(2nd𝐻)((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐺, 𝑃⟩)) = (⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩))
10114, 13, 53, 39, 41, 49, 52, 64prf2 17531 . . . . 5 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩) = ⟨((⟨𝐹, 𝑋⟩(2nd ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩), ((⟨𝐹, 𝑋⟩(2nd ‘(𝑄 1stF 𝑂))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩)⟩)
10213, 28, 38, 49, 52, 53, 64cofu2 17228 . . . . . . 7 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩) = ((((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)(2nd ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩))‘((⟨𝐹, 𝑋⟩(2nd ‘(𝑄 2ndF 𝑂))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩)))
10369, 71op2nd 7708 . . . . . . . . . . 11 (2nd ‘⟨(1st𝑌), tpos (2nd𝑌)⟩) = tpos (2nd𝑌)
104103oveqi 7169 . . . . . . . . . 10 (((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)(2nd ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩)) = (((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)tpos (2nd𝑌)((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩))
105 ovtpos 7923 . . . . . . . . . 10 (((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)tpos (2nd𝑌)((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩)) = (((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩)(2nd𝑌)((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩))
106104, 105eqtri 2781 . . . . . . . . 9 (((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)(2nd ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩)) = (((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩)(2nd𝑌)((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩))
10791, 77oveq12d 7174 . . . . . . . . 9 (𝜑 → (((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩)(2nd𝑌)((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)) = (𝑃(2nd𝑌)𝑋))
108106, 107syl5eq 2805 . . . . . . . 8 (𝜑 → (((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)(2nd ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩)) = (𝑃(2nd𝑌)𝑋))
1097, 13, 53, 26, 18, 27, 49, 522ndf2 17525 . . . . . . . . . 10 (𝜑 → (⟨𝐹, 𝑋⟩(2nd ‘(𝑄 2ndF 𝑂))⟨𝐺, 𝑃⟩) = (2nd ↾ (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)))
110109fveq1d 6665 . . . . . . . . 9 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd ‘(𝑄 2ndF 𝑂))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩) = ((2nd ↾ (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩))‘⟨𝐴, 𝐾⟩))
11164fvresd 6683 . . . . . . . . 9 (𝜑 → ((2nd ↾ (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩))‘⟨𝐴, 𝐾⟩) = (2nd ‘⟨𝐴, 𝐾⟩))
112 op2ndg 7712 . . . . . . . . . 10 ((𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺) ∧ 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋)) → (2nd ‘⟨𝐴, 𝐾⟩) = 𝐾)
11354, 55, 112syl2anc 587 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐴, 𝐾⟩) = 𝐾)
114110, 111, 1133eqtrd 2797 . . . . . . . 8 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd ‘(𝑄 2ndF 𝑂))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩) = 𝐾)
115108, 114fveq12d 6670 . . . . . . 7 (𝜑 → ((((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐹, 𝑋⟩)(2nd ‘⟨(1st𝑌), tpos (2nd𝑌)⟩)((1st ‘(𝑄 2ndF 𝑂))‘⟨𝐺, 𝑃⟩))‘((⟨𝐹, 𝑋⟩(2nd ‘(𝑄 2ndF 𝑂))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩)) = ((𝑃(2nd𝑌)𝑋)‘𝐾))
116102, 115eqtrd 2793 . . . . . 6 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩) = ((𝑃(2nd𝑌)𝑋)‘𝐾))
1177, 13, 53, 26, 18, 40, 49, 521stf2 17522 . . . . . . . 8 (𝜑 → (⟨𝐹, 𝑋⟩(2nd ‘(𝑄 1stF 𝑂))⟨𝐺, 𝑃⟩) = (1st ↾ (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩)))
118117fveq1d 6665 . . . . . . 7 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd ‘(𝑄 1stF 𝑂))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩) = ((1st ↾ (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩))‘⟨𝐴, 𝐾⟩))
11964fvresd 6683 . . . . . . 7 (𝜑 → ((1st ↾ (⟨𝐹, 𝑋⟩(Hom ‘(𝑄 ×c 𝑂))⟨𝐺, 𝑃⟩))‘⟨𝐴, 𝐾⟩) = (1st ‘⟨𝐴, 𝐾⟩))
120 op1stg 7711 . . . . . . . 8 ((𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺) ∧ 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋)) → (1st ‘⟨𝐴, 𝐾⟩) = 𝐴)
12154, 55, 120syl2anc 587 . . . . . . 7 (𝜑 → (1st ‘⟨𝐴, 𝐾⟩) = 𝐴)
122118, 119, 1213eqtrd 2797 . . . . . 6 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd ‘(𝑄 1stF 𝑂))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩) = 𝐴)
123116, 122opeq12d 4774 . . . . 5 (𝜑 → ⟨((⟨𝐹, 𝑋⟩(2nd ‘(⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩), ((⟨𝐹, 𝑋⟩(2nd ‘(𝑄 1stF 𝑂))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩)⟩ = ⟨((𝑃(2nd𝑌)𝑋)‘𝐾), 𝐴⟩)
124101, 123eqtrd 2793 . . . 4 (𝜑 → ((⟨𝐹, 𝑋⟩(2nd ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩) = ⟨((𝑃(2nd𝑌)𝑋)‘𝐾), 𝐴⟩)
125100, 124fveq12d 6670 . . 3 (𝜑 → ((((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩)(2nd𝐻)((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐺, 𝑃⟩))‘((⟨𝐹, 𝑋⟩(2nd ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩)) = ((⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)‘⟨((𝑃(2nd𝑌)𝑋)‘𝐾), 𝐴⟩))
126 df-ov 7159 . . 3 (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴) = ((⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)‘⟨((𝑃(2nd𝑌)𝑋)‘𝐾), 𝐴⟩)
127125, 126eqtr4di 2811 . 2 (𝜑 → ((((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐹, 𝑋⟩)(2nd𝐻)((1st ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))‘⟨𝐺, 𝑃⟩))‘((⟨𝐹, 𝑋⟩(2nd ‘((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))⟨𝐺, 𝑃⟩)‘⟨𝐴, 𝐾⟩)) = (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴))
12866, 127eqtrd 2793 1 (𝜑 → (𝐴(⟨𝐹, 𝑋⟩(2nd𝑍)⟨𝐺, 𝑃⟩)𝐾) = (((𝑃(2nd𝑌)𝑋)‘𝐾)(⟨((1st𝑌)‘𝑋), 𝐹⟩(2nd𝐻)⟨((1st𝑌)‘𝑃), 𝐺⟩)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3409  cun 3858  wss 3860  cop 4531   class class class wbr 5036   × cxp 5526  ran crn 5529  cres 5530  Rel wrel 5533  cfv 6340  (class class class)co 7156  1st c1st 7697  2nd c2nd 7698  tpos ctpos 7907  Basecbs 16554  Hom chom 16647  Catccat 17006  Idccid 17007  Homf chomf 17008  oppCatcoppc 17052   Func cfunc 17196  func ccofu 17198   Nat cnat 17283   FuncCat cfuc 17284  SetCatcsetc 17414   ×c cxpc 17497   1stF c1stf 17498   2ndF c2ndf 17499   ⟨,⟩F cprf 17500   evalF cevlf 17538  HomFchof 17577  Yoncyon 17578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-hom 16660  df-cco 16661  df-cat 17010  df-cid 17011  df-homf 17012  df-comf 17013  df-oppc 17053  df-func 17200  df-cofu 17202  df-nat 17285  df-fuc 17286  df-setc 17415  df-xpc 17501  df-1stf 17502  df-2ndf 17503  df-prf 17504  df-curf 17543  df-hof 17579  df-yon 17580
This theorem is referenced by:  yonedalem3b  17608
  Copyright terms: Public domain W3C validator