| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposf2 | Structured version Visualization version GIF version | ||
| Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposf2 | ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposfo2 8231 | . . . . 5 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→ran 𝐹 → tpos 𝐹:◡𝐴–onto→ran 𝐹)) | |
| 2 | ffn 6691 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | dffn4 6781 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→ran 𝐹) |
| 5 | 1, 4 | impel 505 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴–onto→ran 𝐹) |
| 6 | fof 6775 | . . . 4 ⊢ (tpos 𝐹:◡𝐴–onto→ran 𝐹 → tpos 𝐹:◡𝐴⟶ran 𝐹) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴⟶ran 𝐹) |
| 8 | frn 6698 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → ran 𝐹 ⊆ 𝐵) |
| 10 | 7, 9 | fssd 6708 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴⟶𝐵) |
| 11 | 10 | ex 412 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3917 ◡ccnv 5640 ran crn 5642 Rel wrel 5646 Fn wfn 6509 ⟶wf 6510 –onto→wfo 6512 tpos ctpos 8207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-tpos 8208 |
| This theorem is referenced by: tposf 8236 |
| Copyright terms: Public domain | W3C validator |