MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf2 Structured version   Visualization version   GIF version

Theorem tposf2 8037
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf2 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))

Proof of Theorem tposf2
StepHypRef Expression
1 tposfo2 8036 . . . . 5 (Rel 𝐴 → (𝐹:𝐴onto→ran 𝐹 → tpos 𝐹:𝐴onto→ran 𝐹))
2 ffn 6584 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 dffn4 6678 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
42, 3sylib 217 . . . . 5 (𝐹:𝐴𝐵𝐹:𝐴onto→ran 𝐹)
51, 4impel 505 . . . 4 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴onto→ran 𝐹)
6 fof 6672 . . . 4 (tpos 𝐹:𝐴onto→ran 𝐹 → tpos 𝐹:𝐴⟶ran 𝐹)
75, 6syl 17 . . 3 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴⟶ran 𝐹)
8 frn 6591 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
98adantl 481 . . 3 ((Rel 𝐴𝐹:𝐴𝐵) → ran 𝐹𝐵)
107, 9fssd 6602 . 2 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴𝐵)
1110ex 412 1 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3883  ccnv 5579  ran crn 5581  Rel wrel 5585   Fn wfn 6413  wf 6414  ontowfo 6416  tpos ctpos 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-tpos 8013
This theorem is referenced by:  tposf  8041
  Copyright terms: Public domain W3C validator