MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf2 Structured version   Visualization version   GIF version

Theorem tposf2 8291
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf2 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))

Proof of Theorem tposf2
StepHypRef Expression
1 tposfo2 8290 . . . . 5 (Rel 𝐴 → (𝐹:𝐴onto→ran 𝐹 → tpos 𝐹:𝐴onto→ran 𝐹))
2 ffn 6747 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 dffn4 6840 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
42, 3sylib 218 . . . . 5 (𝐹:𝐴𝐵𝐹:𝐴onto→ran 𝐹)
51, 4impel 505 . . . 4 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴onto→ran 𝐹)
6 fof 6834 . . . 4 (tpos 𝐹:𝐴onto→ran 𝐹 → tpos 𝐹:𝐴⟶ran 𝐹)
75, 6syl 17 . . 3 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴⟶ran 𝐹)
8 frn 6754 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
98adantl 481 . . 3 ((Rel 𝐴𝐹:𝐴𝐵) → ran 𝐹𝐵)
107, 9fssd 6764 . 2 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴𝐵)
1110ex 412 1 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3976  ccnv 5699  ran crn 5701  Rel wrel 5705   Fn wfn 6568  wf 6569  ontowfo 6571  tpos ctpos 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-tpos 8267
This theorem is referenced by:  tposf  8295
  Copyright terms: Public domain W3C validator