MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf2 Structured version   Visualization version   GIF version

Theorem tposf2 8229
Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf2 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))

Proof of Theorem tposf2
StepHypRef Expression
1 tposfo2 8228 . . . . 5 (Rel 𝐴 → (𝐹:𝐴onto→ran 𝐹 → tpos 𝐹:𝐴onto→ran 𝐹))
2 ffn 6688 . . . . . 6 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 dffn4 6778 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
42, 3sylib 218 . . . . 5 (𝐹:𝐴𝐵𝐹:𝐴onto→ran 𝐹)
51, 4impel 505 . . . 4 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴onto→ran 𝐹)
6 fof 6772 . . . 4 (tpos 𝐹:𝐴onto→ran 𝐹 → tpos 𝐹:𝐴⟶ran 𝐹)
75, 6syl 17 . . 3 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴⟶ran 𝐹)
8 frn 6695 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
98adantl 481 . . 3 ((Rel 𝐴𝐹:𝐴𝐵) → ran 𝐹𝐵)
107, 9fssd 6705 . 2 ((Rel 𝐴𝐹:𝐴𝐵) → tpos 𝐹:𝐴𝐵)
1110ex 412 1 (Rel 𝐴 → (𝐹:𝐴𝐵 → tpos 𝐹:𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3914  ccnv 5637  ran crn 5639  Rel wrel 5643   Fn wfn 6506  wf 6507  ontowfo 6509  tpos ctpos 8204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-tpos 8205
This theorem is referenced by:  tposf  8233
  Copyright terms: Public domain W3C validator