Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tposf2 | Structured version Visualization version GIF version |
Description: The domain and range of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf2 | ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposfo2 7944 | . . . . 5 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→ran 𝐹 → tpos 𝐹:◡𝐴–onto→ran 𝐹)) | |
2 | ffn 6504 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | dffn4 6598 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
4 | 2, 3 | sylib 221 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→ran 𝐹) |
5 | 1, 4 | impel 509 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴–onto→ran 𝐹) |
6 | fof 6592 | . . . 4 ⊢ (tpos 𝐹:◡𝐴–onto→ran 𝐹 → tpos 𝐹:◡𝐴⟶ran 𝐹) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴⟶ran 𝐹) |
8 | frn 6511 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
9 | 8 | adantl 485 | . . 3 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → ran 𝐹 ⊆ 𝐵) |
10 | 7, 9 | fssd 6522 | . 2 ⊢ ((Rel 𝐴 ∧ 𝐹:𝐴⟶𝐵) → tpos 𝐹:◡𝐴⟶𝐵) |
11 | 10 | ex 416 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴⟶𝐵 → tpos 𝐹:◡𝐴⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ⊆ wss 3843 ◡ccnv 5524 ran crn 5526 Rel wrel 5530 Fn wfn 6334 ⟶wf 6335 –onto→wfo 6337 tpos ctpos 7920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fo 6345 df-fv 6347 df-tpos 7921 |
This theorem is referenced by: tposf 7949 |
Copyright terms: Public domain | W3C validator |