| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tposidres | Structured version Visualization version GIF version | ||
| Description: Swap an ordered pair. (Contributed by Zhi Wang, 5-Oct-2025.) |
| Ref | Expression |
|---|---|
| tposidres.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| tposidres.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| tposidres | ⊢ (𝜑 → (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = 〈𝑋, 𝑌〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovtpos 8235 | . . . 4 ⊢ (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = (𝑋( I ↾ (𝐴 × 𝐵))𝑌) | |
| 2 | df-ov 7403 | . . . 4 ⊢ (𝑋( I ↾ (𝐴 × 𝐵))𝑌) = (( I ↾ (𝐴 × 𝐵))‘〈𝑋, 𝑌〉) | |
| 3 | 1, 2 | eqtri 2757 | . . 3 ⊢ (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = (( I ↾ (𝐴 × 𝐵))‘〈𝑋, 𝑌〉) |
| 4 | tposidres.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 5 | tposidres.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 4, 5 | opelxpd 5691 | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐴 × 𝐵)) |
| 7 | 6 | fvresd 6893 | . . 3 ⊢ (𝜑 → (( I ↾ (𝐴 × 𝐵))‘〈𝑋, 𝑌〉) = ( I ‘〈𝑋, 𝑌〉)) |
| 8 | 3, 7 | eqtrid 2781 | . 2 ⊢ (𝜑 → (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = ( I ‘〈𝑋, 𝑌〉)) |
| 9 | opex 5437 | . . 3 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
| 10 | fvi 6952 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ V → ( I ‘〈𝑋, 𝑌〉) = 〈𝑋, 𝑌〉) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ ( I ‘〈𝑋, 𝑌〉) = 〈𝑋, 𝑌〉 |
| 12 | 8, 11 | eqtrdi 2785 | 1 ⊢ (𝜑 → (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = 〈𝑋, 𝑌〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3457 〈cop 4605 I cid 5545 × cxp 5650 ↾ cres 5654 ‘cfv 6528 (class class class)co 7400 tpos ctpos 8219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-fv 6536 df-ov 7403 df-tpos 8220 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |