Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposidres Structured version   Visualization version   GIF version

Theorem tposidres 48759
Description: Swap an ordered pair. (Contributed by Zhi Wang, 5-Oct-2025.)
Hypotheses
Ref Expression
tposidres.x (𝜑𝑋𝐴)
tposidres.y (𝜑𝑌𝐵)
Assertion
Ref Expression
tposidres (𝜑 → (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = ⟨𝑋, 𝑌⟩)

Proof of Theorem tposidres
StepHypRef Expression
1 ovtpos 8262 . . . 4 (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = (𝑋( I ↾ (𝐴 × 𝐵))𝑌)
2 df-ov 7432 . . . 4 (𝑋( I ↾ (𝐴 × 𝐵))𝑌) = (( I ↾ (𝐴 × 𝐵))‘⟨𝑋, 𝑌⟩)
31, 2eqtri 2764 . . 3 (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = (( I ↾ (𝐴 × 𝐵))‘⟨𝑋, 𝑌⟩)
4 tposidres.x . . . . 5 (𝜑𝑋𝐴)
5 tposidres.y . . . . 5 (𝜑𝑌𝐵)
64, 5opelxpd 5722 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
76fvresd 6924 . . 3 (𝜑 → (( I ↾ (𝐴 × 𝐵))‘⟨𝑋, 𝑌⟩) = ( I ‘⟨𝑋, 𝑌⟩))
83, 7eqtrid 2788 . 2 (𝜑 → (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = ( I ‘⟨𝑋, 𝑌⟩))
9 opex 5467 . . 3 𝑋, 𝑌⟩ ∈ V
10 fvi 6983 . . 3 (⟨𝑋, 𝑌⟩ ∈ V → ( I ‘⟨𝑋, 𝑌⟩) = ⟨𝑋, 𝑌⟩)
119, 10ax-mp 5 . 2 ( I ‘⟨𝑋, 𝑌⟩) = ⟨𝑋, 𝑌
128, 11eqtrdi 2792 1 (𝜑 → (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3479  cop 4630   I cid 5575   × cxp 5681  cres 5685  cfv 6559  (class class class)co 7429  tpos ctpos 8246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-fv 6567  df-ov 7432  df-tpos 8247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator