Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tposidres Structured version   Visualization version   GIF version

Theorem tposidres 48867
Description: Swap an ordered pair. (Contributed by Zhi Wang, 5-Oct-2025.)
Hypotheses
Ref Expression
tposidres.x (𝜑𝑋𝐴)
tposidres.y (𝜑𝑌𝐵)
Assertion
Ref Expression
tposidres (𝜑 → (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = ⟨𝑋, 𝑌⟩)

Proof of Theorem tposidres
StepHypRef Expression
1 ovtpos 8197 . . . 4 (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = (𝑋( I ↾ (𝐴 × 𝐵))𝑌)
2 df-ov 7372 . . . 4 (𝑋( I ↾ (𝐴 × 𝐵))𝑌) = (( I ↾ (𝐴 × 𝐵))‘⟨𝑋, 𝑌⟩)
31, 2eqtri 2752 . . 3 (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = (( I ↾ (𝐴 × 𝐵))‘⟨𝑋, 𝑌⟩)
4 tposidres.x . . . . 5 (𝜑𝑋𝐴)
5 tposidres.y . . . . 5 (𝜑𝑌𝐵)
64, 5opelxpd 5670 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐴 × 𝐵))
76fvresd 6860 . . 3 (𝜑 → (( I ↾ (𝐴 × 𝐵))‘⟨𝑋, 𝑌⟩) = ( I ‘⟨𝑋, 𝑌⟩))
83, 7eqtrid 2776 . 2 (𝜑 → (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = ( I ‘⟨𝑋, 𝑌⟩))
9 opex 5419 . . 3 𝑋, 𝑌⟩ ∈ V
10 fvi 6919 . . 3 (⟨𝑋, 𝑌⟩ ∈ V → ( I ‘⟨𝑋, 𝑌⟩) = ⟨𝑋, 𝑌⟩)
119, 10ax-mp 5 . 2 ( I ‘⟨𝑋, 𝑌⟩) = ⟨𝑋, 𝑌
128, 11eqtrdi 2780 1 (𝜑 → (𝑌tpos ( I ↾ (𝐴 × 𝐵))𝑋) = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591   I cid 5525   × cxp 5629  cres 5633  cfv 6499  (class class class)co 7369  tpos ctpos 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-ov 7372  df-tpos 8182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator