| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustrel | Structured version Visualization version GIF version | ||
| Description: The elements of uniform structures, called entourages, are relations. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
| Ref | Expression |
|---|---|
| ustrel | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → Rel 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustssxp 24118 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | |
| 2 | xpss 5632 | . . 3 ⊢ (𝑋 × 𝑋) ⊆ (V × V) | |
| 3 | 1, 2 | sstrdi 3947 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (V × V)) |
| 4 | df-rel 5623 | . 2 ⊢ (Rel 𝑉 ↔ 𝑉 ⊆ (V × V)) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → Rel 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 × cxp 5614 Rel wrel 5621 ‘cfv 6481 UnifOncust 24113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-iota 6437 df-fun 6483 df-fv 6489 df-ust 24114 |
| This theorem is referenced by: ustssco 24128 ustexsym 24129 ustuqtop4 24157 utop2nei 24163 utop3cls 24164 ucncn 24197 |
| Copyright terms: Public domain | W3C validator |