![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustrel | Structured version Visualization version GIF version |
Description: The elements of uniform structures, called entourages, are relations. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
Ref | Expression |
---|---|
ustrel | β’ ((π β (UnifOnβπ) β§ π β π) β Rel π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustssxp 24060 | . . 3 β’ ((π β (UnifOnβπ) β§ π β π) β π β (π Γ π)) | |
2 | xpss 5685 | . . 3 β’ (π Γ π) β (V Γ V) | |
3 | 1, 2 | sstrdi 3989 | . 2 β’ ((π β (UnifOnβπ) β§ π β π) β π β (V Γ V)) |
4 | df-rel 5676 | . 2 β’ (Rel π β π β (V Γ V)) | |
5 | 3, 4 | sylibr 233 | 1 β’ ((π β (UnifOnβπ) β§ π β π) β Rel π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2098 Vcvv 3468 β wss 3943 Γ cxp 5667 Rel wrel 5674 βcfv 6536 UnifOncust 24055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-res 5681 df-iota 6488 df-fun 6538 df-fv 6544 df-ust 24056 |
This theorem is referenced by: ustssco 24070 ustexsym 24071 ustuqtop4 24100 utop2nei 24106 utop3cls 24107 ucncn 24141 |
Copyright terms: Public domain | W3C validator |