MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustrel Structured version   Visualization version   GIF version

Theorem ustrel 24125
Description: The elements of uniform structures, called entourages, are relations. (Contributed by Thierry Arnoux, 15-Nov-2017.)
Assertion
Ref Expression
ustrel ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)

Proof of Theorem ustrel
StepHypRef Expression
1 ustssxp 24118 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑋 × 𝑋))
2 xpss 5632 . . 3 (𝑋 × 𝑋) ⊆ (V × V)
31, 2sstrdi 3947 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (V × V))
4 df-rel 5623 . 2 (Rel 𝑉𝑉 ⊆ (V × V))
53, 4sylibr 234 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436  wss 3902   × cxp 5614  Rel wrel 5621  cfv 6481  UnifOncust 24113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-ust 24114
This theorem is referenced by:  ustssco  24128  ustexsym  24129  ustuqtop4  24157  utop2nei  24163  utop3cls  24164  ucncn  24197
  Copyright terms: Public domain W3C validator