MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustrel Structured version   Visualization version   GIF version

Theorem ustrel 24067
Description: The elements of uniform structures, called entourages, are relations. (Contributed by Thierry Arnoux, 15-Nov-2017.)
Assertion
Ref Expression
ustrel ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ Rel 𝑉)

Proof of Theorem ustrel
StepHypRef Expression
1 ustssxp 24060 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ 𝑉 βŠ† (𝑋 Γ— 𝑋))
2 xpss 5685 . . 3 (𝑋 Γ— 𝑋) βŠ† (V Γ— V)
31, 2sstrdi 3989 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ 𝑉 βŠ† (V Γ— V))
4 df-rel 5676 . 2 (Rel 𝑉 ↔ 𝑉 βŠ† (V Γ— V))
53, 4sylibr 233 1 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ Rel 𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∈ wcel 2098  Vcvv 3468   βŠ† wss 3943   Γ— cxp 5667  Rel wrel 5674  β€˜cfv 6536  UnifOncust 24055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-iota 6488  df-fun 6538  df-fv 6544  df-ust 24056
This theorem is referenced by:  ustssco  24070  ustexsym  24071  ustuqtop4  24100  utop2nei  24106  utop3cls  24107  ucncn  24141
  Copyright terms: Public domain W3C validator