![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvtxel1 | Structured version Visualization version GIF version |
Description: Characterization of a universal vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isuvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uvtxel1 | ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4658 | . . . 4 ⊢ (𝑛 = 𝑁 → {𝑛} = {𝑁}) | |
2 | 1 | difeq2d 4149 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑉 ∖ {𝑛}) = (𝑉 ∖ {𝑁})) |
3 | preq2 4759 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑘, 𝑛} = {𝑘, 𝑁}) | |
4 | 3 | sseq1d 4040 | . . . 4 ⊢ (𝑛 = 𝑁 → ({𝑘, 𝑛} ⊆ 𝑒 ↔ {𝑘, 𝑁} ⊆ 𝑒)) |
5 | 4 | rexbidv 3185 | . . 3 ⊢ (𝑛 = 𝑁 → (∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
6 | 2, 5 | raleqbidv 3354 | . 2 ⊢ (𝑛 = 𝑁 → (∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
7 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | isuvtx.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
9 | 7, 8 | isuvtx 29430 | . 2 ⊢ (UnivVtx‘𝐺) = {𝑛 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒} |
10 | 6, 9 | elrab2 3711 | 1 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 {cpr 4650 ‘cfv 6573 Vtxcvtx 29031 Edgcedg 29082 UnivVtxcuvtx 29420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-nbgr 29368 df-uvtx 29421 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |