![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvtxel1 | Structured version Visualization version GIF version |
Description: Characterization of a universal vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isuvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uvtxel1 | ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4641 | . . . 4 ⊢ (𝑛 = 𝑁 → {𝑛} = {𝑁}) | |
2 | 1 | difeq2d 4136 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑉 ∖ {𝑛}) = (𝑉 ∖ {𝑁})) |
3 | preq2 4739 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑘, 𝑛} = {𝑘, 𝑁}) | |
4 | 3 | sseq1d 4027 | . . . 4 ⊢ (𝑛 = 𝑁 → ({𝑘, 𝑛} ⊆ 𝑒 ↔ {𝑘, 𝑁} ⊆ 𝑒)) |
5 | 4 | rexbidv 3177 | . . 3 ⊢ (𝑛 = 𝑁 → (∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
6 | 2, 5 | raleqbidv 3344 | . 2 ⊢ (𝑛 = 𝑁 → (∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
7 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | isuvtx.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
9 | 7, 8 | isuvtx 29427 | . 2 ⊢ (UnivVtx‘𝐺) = {𝑛 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒} |
10 | 6, 9 | elrab2 3698 | 1 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∖ cdif 3960 ⊆ wss 3963 {csn 4631 {cpr 4633 ‘cfv 6563 Vtxcvtx 29028 Edgcedg 29079 UnivVtxcuvtx 29417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-nbgr 29365 df-uvtx 29418 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |