![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvtxel1 | Structured version Visualization version GIF version |
Description: Characterization of a universal vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
uvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isuvtx.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uvtxel1 | ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4633 | . . . 4 ⊢ (𝑛 = 𝑁 → {𝑛} = {𝑁}) | |
2 | 1 | difeq2d 4117 | . . 3 ⊢ (𝑛 = 𝑁 → (𝑉 ∖ {𝑛}) = (𝑉 ∖ {𝑁})) |
3 | preq2 4733 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑘, 𝑛} = {𝑘, 𝑁}) | |
4 | 3 | sseq1d 4008 | . . . 4 ⊢ (𝑛 = 𝑁 → ({𝑘, 𝑛} ⊆ 𝑒 ↔ {𝑘, 𝑁} ⊆ 𝑒)) |
5 | 4 | rexbidv 3172 | . . 3 ⊢ (𝑛 = 𝑁 → (∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
6 | 2, 5 | raleqbidv 3336 | . 2 ⊢ (𝑛 = 𝑁 → (∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
7 | uvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | isuvtx.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
9 | 7, 8 | isuvtx 29155 | . 2 ⊢ (UnivVtx‘𝐺) = {𝑛 ∈ 𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒 ∈ 𝐸 {𝑘, 𝑛} ⊆ 𝑒} |
10 | 6, 9 | elrab2 3681 | 1 ⊢ (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁 ∈ 𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒 ∈ 𝐸 {𝑘, 𝑁} ⊆ 𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ∖ cdif 3940 ⊆ wss 3943 {csn 4623 {cpr 4625 ‘cfv 6536 Vtxcvtx 28759 Edgcedg 28810 UnivVtxcuvtx 29145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-nbgr 29093 df-uvtx 29146 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |