MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxnbgr Structured version   Visualization version   GIF version

Theorem uvtxnbgr 29378
Description: A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 23-Mar-2021.)
Hypothesis
Ref Expression
uvtxnbgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxnbgr (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))

Proof of Theorem uvtxnbgr
StepHypRef Expression
1 uvtxnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
21nbgrssovtx 29339 . . 3 (𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑁})
32a1i 11 . 2 (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) ⊆ (𝑉 ∖ {𝑁}))
41uvtxnbgrss 29370 . 2 (𝑁 ∈ (UnivVtx‘𝐺) → (𝑉 ∖ {𝑁}) ⊆ (𝐺 NeighbVtx 𝑁))
53, 4eqssd 3947 1 (𝑁 ∈ (UnivVtx‘𝐺) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cdif 3894  wss 3897  {csn 4573  cfv 6481  (class class class)co 7346  Vtxcvtx 28974   NeighbVtx cnbgr 29310  UnivVtxcuvtx 29363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-nbgr 29311  df-uvtx 29364
This theorem is referenced by:  uvtxnbgrb  29379  uvtxnm1nbgr  29382  uvtxupgrres  29386
  Copyright terms: Public domain W3C validator