|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vopnbgrel | Structured version Visualization version GIF version | ||
| Description: Characterization of a member 𝑋 of the semiopen neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.) | 
| Ref | Expression | 
|---|---|
| dfvopnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| dfvopnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) | 
| dfvopnbgr2.u | ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} | 
| Ref | Expression | 
|---|---|
| vopnbgrel | ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfvopnbgr2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | dfvopnbgr2.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | dfvopnbgr2.u | . . . 4 ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} | |
| 4 | 1, 2, 3 | dfvopnbgr2 47839 | . . 3 ⊢ (𝑁 ∈ 𝑉 → 𝑈 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) | 
| 5 | 4 | eleq2d 2827 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))})) | 
| 6 | neeq1 3003 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑛 ≠ 𝑁 ↔ 𝑋 ≠ 𝑁)) | |
| 7 | eleq1 2829 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑛 ∈ 𝑒 ↔ 𝑋 ∈ 𝑒)) | |
| 8 | 6, 7 | 3anbi13d 1440 | . . . . 5 ⊢ (𝑛 = 𝑋 → ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒))) | 
| 9 | eqeq1 2741 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑛 = 𝑁 ↔ 𝑋 = 𝑁)) | |
| 10 | sneq 4636 | . . . . . . 7 ⊢ (𝑛 = 𝑋 → {𝑛} = {𝑋}) | |
| 11 | 10 | eqeq2d 2748 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑒 = {𝑛} ↔ 𝑒 = {𝑋})) | 
| 12 | 9, 11 | anbi12d 632 | . . . . 5 ⊢ (𝑛 = 𝑋 → ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) ↔ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))) | 
| 13 | 8, 12 | orbi12d 919 | . . . 4 ⊢ (𝑛 = 𝑋 → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ↔ ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋})))) | 
| 14 | 13 | rexbidv 3179 | . . 3 ⊢ (𝑛 = 𝑋 → (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ↔ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋})))) | 
| 15 | 14 | elrab 3692 | . 2 ⊢ (𝑋 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋})))) | 
| 16 | 5, 15 | bitrdi 287 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 {crab 3436 {csn 4626 ‘cfv 6561 (class class class)co 7431 Vtxcvtx 29013 Edgcedg 29064 NeighbVtx cnbgr 29349 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-nbgr 29350 | 
| This theorem is referenced by: vopnbgrelself 47841 | 
| Copyright terms: Public domain | W3C validator |