Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vopnbgrel Structured version   Visualization version   GIF version

Theorem vopnbgrel 47858
Description: Characterization of a member 𝑋 of the semiopen neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfvopnbgr2.v 𝑉 = (Vtx‘𝐺)
dfvopnbgr2.e 𝐸 = (Edg‘𝐺)
dfvopnbgr2.u 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
Assertion
Ref Expression
vopnbgrel (𝑁𝑉 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ ∃𝑒𝐸 ((𝑋𝑁𝑁𝑒𝑋𝑒) ∨ (𝑋 = 𝑁𝑒 = {𝑋})))))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑛,𝐸   𝑒,𝑋,𝑛
Allowed substitution hints:   𝑈(𝑒,𝑛)   𝐺(𝑛)

Proof of Theorem vopnbgrel
StepHypRef Expression
1 dfvopnbgr2.v . . . 4 𝑉 = (Vtx‘𝐺)
2 dfvopnbgr2.e . . . 4 𝐸 = (Edg‘𝐺)
3 dfvopnbgr2.u . . . 4 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
41, 2, 3dfvopnbgr2 47857 . . 3 (𝑁𝑉𝑈 = {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))})
54eleq2d 2815 . 2 (𝑁𝑉 → (𝑋𝑈𝑋 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))}))
6 neeq1 2988 . . . . . 6 (𝑛 = 𝑋 → (𝑛𝑁𝑋𝑁))
7 eleq1 2817 . . . . . 6 (𝑛 = 𝑋 → (𝑛𝑒𝑋𝑒))
86, 73anbi13d 1440 . . . . 5 (𝑛 = 𝑋 → ((𝑛𝑁𝑁𝑒𝑛𝑒) ↔ (𝑋𝑁𝑁𝑒𝑋𝑒)))
9 eqeq1 2734 . . . . . 6 (𝑛 = 𝑋 → (𝑛 = 𝑁𝑋 = 𝑁))
10 sneq 4602 . . . . . . 7 (𝑛 = 𝑋 → {𝑛} = {𝑋})
1110eqeq2d 2741 . . . . . 6 (𝑛 = 𝑋 → (𝑒 = {𝑛} ↔ 𝑒 = {𝑋}))
129, 11anbi12d 632 . . . . 5 (𝑛 = 𝑋 → ((𝑛 = 𝑁𝑒 = {𝑛}) ↔ (𝑋 = 𝑁𝑒 = {𝑋})))
138, 12orbi12d 918 . . . 4 (𝑛 = 𝑋 → (((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ↔ ((𝑋𝑁𝑁𝑒𝑋𝑒) ∨ (𝑋 = 𝑁𝑒 = {𝑋}))))
1413rexbidv 3158 . . 3 (𝑛 = 𝑋 → (∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛})) ↔ ∃𝑒𝐸 ((𝑋𝑁𝑁𝑒𝑋𝑒) ∨ (𝑋 = 𝑁𝑒 = {𝑋}))))
1514elrab 3662 . 2 (𝑋 ∈ {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))} ↔ (𝑋𝑉 ∧ ∃𝑒𝐸 ((𝑋𝑁𝑁𝑒𝑋𝑒) ∨ (𝑋 = 𝑁𝑒 = {𝑋}))))
165, 15bitrdi 287 1 (𝑁𝑉 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ ∃𝑒𝐸 ((𝑋𝑁𝑁𝑒𝑋𝑒) ∨ (𝑋 = 𝑁𝑒 = {𝑋})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  {csn 4592  cfv 6514  (class class class)co 7390  Vtxcvtx 28930  Edgcedg 28981   NeighbVtx cnbgr 29266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-nbgr 29267
This theorem is referenced by:  vopnbgrelself  47859
  Copyright terms: Public domain W3C validator