| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vopnbgrel | Structured version Visualization version GIF version | ||
| Description: Characterization of a member 𝑋 of the semiopen neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.) |
| Ref | Expression |
|---|---|
| dfvopnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfvopnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
| dfvopnbgr2.u | ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} |
| Ref | Expression |
|---|---|
| vopnbgrel | ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfvopnbgr2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | dfvopnbgr2.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | dfvopnbgr2.u | . . . 4 ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} | |
| 4 | 1, 2, 3 | dfvopnbgr2 47857 | . . 3 ⊢ (𝑁 ∈ 𝑉 → 𝑈 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) |
| 5 | 4 | eleq2d 2815 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))})) |
| 6 | neeq1 2988 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑛 ≠ 𝑁 ↔ 𝑋 ≠ 𝑁)) | |
| 7 | eleq1 2817 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑛 ∈ 𝑒 ↔ 𝑋 ∈ 𝑒)) | |
| 8 | 6, 7 | 3anbi13d 1440 | . . . . 5 ⊢ (𝑛 = 𝑋 → ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒))) |
| 9 | eqeq1 2734 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑛 = 𝑁 ↔ 𝑋 = 𝑁)) | |
| 10 | sneq 4602 | . . . . . . 7 ⊢ (𝑛 = 𝑋 → {𝑛} = {𝑋}) | |
| 11 | 10 | eqeq2d 2741 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑒 = {𝑛} ↔ 𝑒 = {𝑋})) |
| 12 | 9, 11 | anbi12d 632 | . . . . 5 ⊢ (𝑛 = 𝑋 → ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) ↔ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))) |
| 13 | 8, 12 | orbi12d 918 | . . . 4 ⊢ (𝑛 = 𝑋 → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ↔ ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋})))) |
| 14 | 13 | rexbidv 3158 | . . 3 ⊢ (𝑛 = 𝑋 → (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ↔ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋})))) |
| 15 | 14 | elrab 3662 | . 2 ⊢ (𝑋 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋})))) |
| 16 | 5, 15 | bitrdi 287 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 {csn 4592 ‘cfv 6514 (class class class)co 7390 Vtxcvtx 28930 Edgcedg 28981 NeighbVtx cnbgr 29266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-nbgr 29267 |
| This theorem is referenced by: vopnbgrelself 47859 |
| Copyright terms: Public domain | W3C validator |