| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vopnbgrel | Structured version Visualization version GIF version | ||
| Description: Characterization of a member 𝑋 of the semiopen neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.) |
| Ref | Expression |
|---|---|
| dfvopnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfvopnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
| dfvopnbgr2.u | ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} |
| Ref | Expression |
|---|---|
| vopnbgrel | ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfvopnbgr2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | dfvopnbgr2.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | dfvopnbgr2.u | . . . 4 ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} | |
| 4 | 1, 2, 3 | dfvopnbgr2 47892 | . . 3 ⊢ (𝑁 ∈ 𝑉 → 𝑈 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) |
| 5 | 4 | eleq2d 2817 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))})) |
| 6 | neeq1 2990 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑛 ≠ 𝑁 ↔ 𝑋 ≠ 𝑁)) | |
| 7 | eleq1 2819 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑛 ∈ 𝑒 ↔ 𝑋 ∈ 𝑒)) | |
| 8 | 6, 7 | 3anbi13d 1440 | . . . . 5 ⊢ (𝑛 = 𝑋 → ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒))) |
| 9 | eqeq1 2735 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑛 = 𝑁 ↔ 𝑋 = 𝑁)) | |
| 10 | sneq 4583 | . . . . . . 7 ⊢ (𝑛 = 𝑋 → {𝑛} = {𝑋}) | |
| 11 | 10 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑒 = {𝑛} ↔ 𝑒 = {𝑋})) |
| 12 | 9, 11 | anbi12d 632 | . . . . 5 ⊢ (𝑛 = 𝑋 → ((𝑛 = 𝑁 ∧ 𝑒 = {𝑛}) ↔ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))) |
| 13 | 8, 12 | orbi12d 918 | . . . 4 ⊢ (𝑛 = 𝑋 → (((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ↔ ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋})))) |
| 14 | 13 | rexbidv 3156 | . . 3 ⊢ (𝑛 = 𝑋 → (∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) ↔ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋})))) |
| 15 | 14 | elrab 3642 | . 2 ⊢ (𝑋 ∈ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))} ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋})))) |
| 16 | 5, 15 | bitrdi 287 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 {csn 4573 ‘cfv 6481 (class class class)co 7346 Vtxcvtx 28974 Edgcedg 29025 NeighbVtx cnbgr 29310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-nbgr 29311 |
| This theorem is referenced by: vopnbgrelself 47894 |
| Copyright terms: Public domain | W3C validator |