Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vopnbgrelself Structured version   Visualization version   GIF version

Theorem vopnbgrelself 47855
Description: A vertex 𝑁 is a member of its semiopen neighborhood iff there is a loop joining the vertex with itself. (Contributed by AV, 16-May-2025.)
Hypotheses
Ref Expression
dfvopnbgr2.v 𝑉 = (Vtx‘𝐺)
dfvopnbgr2.e 𝐸 = (Edg‘𝐺)
dfvopnbgr2.u 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
Assertion
Ref Expression
vopnbgrelself (𝑁𝑉 → (𝑁𝑈 ↔ ∃𝑒𝐸 𝑒 = {𝑁}))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛   𝑛,𝐸
Allowed substitution hints:   𝑈(𝑒,𝑛)   𝐺(𝑛)

Proof of Theorem vopnbgrelself
StepHypRef Expression
1 ibar 528 . 2 (𝑁𝑉 → (∃𝑒𝐸 ((𝑁𝑁𝑁𝑒𝑁𝑒) ∨ (𝑁 = 𝑁𝑒 = {𝑁})) ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 ((𝑁𝑁𝑁𝑒𝑁𝑒) ∨ (𝑁 = 𝑁𝑒 = {𝑁})))))
2 eqid 2729 . . . . . . 7 𝑁 = 𝑁
32jctl 523 . . . . . 6 (𝑒 = {𝑁} → (𝑁 = 𝑁𝑒 = {𝑁}))
43olcd 874 . . . . 5 (𝑒 = {𝑁} → ((𝑁𝑁𝑁𝑒𝑁𝑒) ∨ (𝑁 = 𝑁𝑒 = {𝑁})))
5 eqneqall 2936 . . . . . . . 8 (𝑁 = 𝑁 → (𝑁𝑁 → ((𝑁𝑒𝑁𝑒) → 𝑒 = {𝑁})))
62, 5ax-mp 5 . . . . . . 7 (𝑁𝑁 → ((𝑁𝑒𝑁𝑒) → 𝑒 = {𝑁}))
763impib 1116 . . . . . 6 ((𝑁𝑁𝑁𝑒𝑁𝑒) → 𝑒 = {𝑁})
8 simpr 484 . . . . . 6 ((𝑁 = 𝑁𝑒 = {𝑁}) → 𝑒 = {𝑁})
97, 8jaoi 857 . . . . 5 (((𝑁𝑁𝑁𝑒𝑁𝑒) ∨ (𝑁 = 𝑁𝑒 = {𝑁})) → 𝑒 = {𝑁})
104, 9impbii 209 . . . 4 (𝑒 = {𝑁} ↔ ((𝑁𝑁𝑁𝑒𝑁𝑒) ∨ (𝑁 = 𝑁𝑒 = {𝑁})))
1110a1i 11 . . 3 (𝑁𝑉 → (𝑒 = {𝑁} ↔ ((𝑁𝑁𝑁𝑒𝑁𝑒) ∨ (𝑁 = 𝑁𝑒 = {𝑁}))))
1211rexbidv 3157 . 2 (𝑁𝑉 → (∃𝑒𝐸 𝑒 = {𝑁} ↔ ∃𝑒𝐸 ((𝑁𝑁𝑁𝑒𝑁𝑒) ∨ (𝑁 = 𝑁𝑒 = {𝑁}))))
13 dfvopnbgr2.v . . 3 𝑉 = (Vtx‘𝐺)
14 dfvopnbgr2.e . . 3 𝐸 = (Edg‘𝐺)
15 dfvopnbgr2.u . . 3 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
1613, 14, 15vopnbgrel 47854 . 2 (𝑁𝑉 → (𝑁𝑈 ↔ (𝑁𝑉 ∧ ∃𝑒𝐸 ((𝑁𝑁𝑁𝑒𝑁𝑒) ∨ (𝑁 = 𝑁𝑒 = {𝑁})))))
171, 12, 163bitr4rd 312 1 (𝑁𝑉 → (𝑁𝑈 ↔ ∃𝑒𝐸 𝑒 = {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  {csn 4589  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  Edgcedg 28974   NeighbVtx cnbgr 29259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-nbgr 29260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator