| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vopnbgrelself | Structured version Visualization version GIF version | ||
| Description: A vertex 𝑁 is a member of its semiopen neighborhood iff there is a loop joining the vertex with itself. (Contributed by AV, 16-May-2025.) |
| Ref | Expression |
|---|---|
| dfvopnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfvopnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
| dfvopnbgr2.u | ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} |
| Ref | Expression |
|---|---|
| vopnbgrelself | ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ 𝑈 ↔ ∃𝑒 ∈ 𝐸 𝑒 = {𝑁})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . 2 ⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁})) ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁}))))) | |
| 2 | eqid 2734 | . . . . . . 7 ⊢ 𝑁 = 𝑁 | |
| 3 | 2 | jctl 523 | . . . . . 6 ⊢ (𝑒 = {𝑁} → (𝑁 = 𝑁 ∧ 𝑒 = {𝑁})) |
| 4 | 3 | olcd 874 | . . . . 5 ⊢ (𝑒 = {𝑁} → ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁}))) |
| 5 | eqneqall 2942 | . . . . . . . 8 ⊢ (𝑁 = 𝑁 → (𝑁 ≠ 𝑁 → ((𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) → 𝑒 = {𝑁}))) | |
| 6 | 2, 5 | ax-mp 5 | . . . . . . 7 ⊢ (𝑁 ≠ 𝑁 → ((𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) → 𝑒 = {𝑁})) |
| 7 | 6 | 3impib 1116 | . . . . . 6 ⊢ ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) → 𝑒 = {𝑁}) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝑁 = 𝑁 ∧ 𝑒 = {𝑁}) → 𝑒 = {𝑁}) | |
| 9 | 7, 8 | jaoi 857 | . . . . 5 ⊢ (((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁})) → 𝑒 = {𝑁}) |
| 10 | 4, 9 | impbii 209 | . . . 4 ⊢ (𝑒 = {𝑁} ↔ ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁}))) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑒 = {𝑁} ↔ ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁})))) |
| 12 | 11 | rexbidv 3166 | . 2 ⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 𝑒 = {𝑁} ↔ ∃𝑒 ∈ 𝐸 ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁})))) |
| 13 | dfvopnbgr2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 14 | dfvopnbgr2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 15 | dfvopnbgr2.u | . . 3 ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} | |
| 16 | 13, 14, 15 | vopnbgrel 47786 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ 𝑈 ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁}))))) |
| 17 | 1, 12, 16 | 3bitr4rd 312 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ 𝑈 ↔ ∃𝑒 ∈ 𝐸 𝑒 = {𝑁})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {crab 3420 {csn 4608 ‘cfv 6542 (class class class)co 7414 Vtxcvtx 28960 Edgcedg 29011 NeighbVtx cnbgr 29296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-nbgr 29297 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |