![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vopnbgrelself | Structured version Visualization version GIF version |
Description: A vertex 𝑁 is a member of its semiopen neighborhood iff there is a loop joining the vertex with itself. (Contributed by AV, 16-May-2025.) |
Ref | Expression |
---|---|
dfvopnbgr2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
dfvopnbgr2.e | ⊢ 𝐸 = (Edg‘𝐺) |
dfvopnbgr2.u | ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} |
Ref | Expression |
---|---|
vopnbgrelself | ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ 𝑈 ↔ ∃𝑒 ∈ 𝐸 𝑒 = {𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . 2 ⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁})) ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁}))))) | |
2 | eqid 2736 | . . . . . . 7 ⊢ 𝑁 = 𝑁 | |
3 | 2 | jctl 523 | . . . . . 6 ⊢ (𝑒 = {𝑁} → (𝑁 = 𝑁 ∧ 𝑒 = {𝑁})) |
4 | 3 | olcd 874 | . . . . 5 ⊢ (𝑒 = {𝑁} → ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁}))) |
5 | eqneqall 2950 | . . . . . . . 8 ⊢ (𝑁 = 𝑁 → (𝑁 ≠ 𝑁 → ((𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) → 𝑒 = {𝑁}))) | |
6 | 2, 5 | ax-mp 5 | . . . . . . 7 ⊢ (𝑁 ≠ 𝑁 → ((𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) → 𝑒 = {𝑁})) |
7 | 6 | 3impib 1116 | . . . . . 6 ⊢ ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) → 𝑒 = {𝑁}) |
8 | simpr 484 | . . . . . 6 ⊢ ((𝑁 = 𝑁 ∧ 𝑒 = {𝑁}) → 𝑒 = {𝑁}) | |
9 | 7, 8 | jaoi 857 | . . . . 5 ⊢ (((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁})) → 𝑒 = {𝑁}) |
10 | 4, 9 | impbii 209 | . . . 4 ⊢ (𝑒 = {𝑁} ↔ ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁}))) |
11 | 10 | a1i 11 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑒 = {𝑁} ↔ ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁})))) |
12 | 11 | rexbidv 3178 | . 2 ⊢ (𝑁 ∈ 𝑉 → (∃𝑒 ∈ 𝐸 𝑒 = {𝑁} ↔ ∃𝑒 ∈ 𝐸 ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁})))) |
13 | dfvopnbgr2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
14 | dfvopnbgr2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
15 | dfvopnbgr2.u | . . 3 ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} | |
16 | 13, 14, 15 | vopnbgrel 47789 | . 2 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ 𝑈 ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑁 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑁 ∈ 𝑒) ∨ (𝑁 = 𝑁 ∧ 𝑒 = {𝑁}))))) |
17 | 1, 12, 16 | 3bitr4rd 312 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ 𝑈 ↔ ∃𝑒 ∈ 𝐸 𝑒 = {𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 ∃wrex 3069 {crab 3434 {csn 4632 ‘cfv 6566 (class class class)co 7435 Vtxcvtx 29036 Edgcedg 29087 NeighbVtx cnbgr 29372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fv 6574 df-ov 7438 df-oprab 7439 df-mpo 7440 df-1st 8019 df-2nd 8020 df-nbgr 29373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |