MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetdmdm Structured version   Visualization version   GIF version

Theorem xmetdmdm 24256
Description: Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xmetdmdm (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷)

Proof of Theorem xmetdmdm
StepHypRef Expression
1 xmetf 24250 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
21fdmd 6667 . . 3 (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
32dmeqd 5850 . 2 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
4 dmxpid 5875 . 2 dom (𝑋 × 𝑋) = 𝑋
53, 4eqtr2di 2783 1 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   × cxp 5617  dom cdm 5619  cfv 6487  *cxr 11151  ∞Metcxmet 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-xr 11156  df-xmet 21290
This theorem is referenced by:  metdmdm  24257  xmetunirn  24258  cfilfval  25197
  Copyright terms: Public domain W3C validator