| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmetdmdm | Structured version Visualization version GIF version | ||
| Description: Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmetdmdm | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetf 24237 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | 1 | fdmd 6657 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
| 3 | 2 | dmeqd 5843 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋)) |
| 4 | dmxpid 5867 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 5 | 3, 4 | eqtr2di 2782 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 × cxp 5612 dom cdm 5614 ‘cfv 6477 ℝ*cxr 11137 ∞Metcxmet 21269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-xr 11142 df-xmet 21277 |
| This theorem is referenced by: metdmdm 24244 xmetunirn 24245 cfilfval 25184 |
| Copyright terms: Public domain | W3C validator |