MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetdmdm Structured version   Visualization version   GIF version

Theorem xmetdmdm 23486
Description: Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xmetdmdm (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷)

Proof of Theorem xmetdmdm
StepHypRef Expression
1 xmetf 23480 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
21fdmd 6609 . . 3 (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
32dmeqd 5813 . 2 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
4 dmxpid 5838 . 2 dom (𝑋 × 𝑋) = 𝑋
53, 4eqtr2di 2797 1 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110   × cxp 5588  dom cdm 5590  cfv 6432  *cxr 11009  ∞Metcxmet 20580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-map 8600  df-xr 11014  df-xmet 20588
This theorem is referenced by:  metdmdm  23487  xmetunirn  23488  cfilfval  24426
  Copyright terms: Public domain W3C validator