MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetunirn Structured version   Visualization version   GIF version

Theorem xmetunirn 24245
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))

Proof of Theorem xmetunirn
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7374 . . . . . 6 (ℝ*m (𝑥 × 𝑥)) ∈ V
21rabex 5275 . . . . 5 {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V
3 df-xmet 21277 . . . . 5 ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
42, 3fnmpti 6620 . . . 4 ∞Met Fn V
5 fnunirn 7182 . . . 4 (∞Met Fn V → (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)))
64, 5ax-mp 5 . . 3 (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))
7 id 22 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥))
8 xmetdmdm 24243 . . . . . 6 (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷)
98fveq2d 6821 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷))
107, 9eleqtrd 2831 . . . 4 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
1110rexlimivw 3127 . . 3 (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
126, 11sylbi 217 . 2 (𝐷 ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷))
13 fvssunirn 6848 . . 3 (∞Met‘dom dom 𝐷) ⊆ ran ∞Met
1413sseli 3928 . 2 (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ran ∞Met)
1512, 14impbii 209 1 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  {crab 3393  Vcvv 3434   cuni 4857   class class class wbr 5089   × cxp 5612  dom cdm 5614  ran crn 5615   Fn wfn 6472  cfv 6477  (class class class)co 7341  m cmap 8745  0cc0 10998  *cxr 11137  cle 11139   +𝑒 cxad 13001  ∞Metcxmet 21269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-xr 11142  df-xmet 21277
This theorem is referenced by:  isxms2  24356  setsmstopn  24386  tngtopn  24558  cfili  25188  cfilfcls  25194
  Copyright terms: Public domain W3C validator