![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetunirn | Structured version Visualization version GIF version |
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
xmetunirn | β’ (π· β βͺ ran βMet β π· β (βMetβdom dom π·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7445 | . . . . . 6 β’ (β* βm (π₯ Γ π₯)) β V | |
2 | 1 | rabex 5333 | . . . . 5 β’ {π β (β* βm (π₯ Γ π₯)) β£ βπ¦ β π₯ βπ§ β π₯ (((π¦ππ§) = 0 β π¦ = π§) β§ βπ€ β π₯ (π¦ππ§) β€ ((π€ππ¦) +π (π€ππ§)))} β V |
3 | df-xmet 21138 | . . . . 5 β’ βMet = (π₯ β V β¦ {π β (β* βm (π₯ Γ π₯)) β£ βπ¦ β π₯ βπ§ β π₯ (((π¦ππ§) = 0 β π¦ = π§) β§ βπ€ β π₯ (π¦ππ§) β€ ((π€ππ¦) +π (π€ππ§)))}) | |
4 | 2, 3 | fnmpti 6694 | . . . 4 β’ βMet Fn V |
5 | fnunirn 7256 | . . . 4 β’ (βMet Fn V β (π· β βͺ ran βMet β βπ₯ β V π· β (βMetβπ₯))) | |
6 | 4, 5 | ax-mp 5 | . . 3 β’ (π· β βͺ ran βMet β βπ₯ β V π· β (βMetβπ₯)) |
7 | id 22 | . . . . 5 β’ (π· β (βMetβπ₯) β π· β (βMetβπ₯)) | |
8 | xmetdmdm 24062 | . . . . . 6 β’ (π· β (βMetβπ₯) β π₯ = dom dom π·) | |
9 | 8 | fveq2d 6896 | . . . . 5 β’ (π· β (βMetβπ₯) β (βMetβπ₯) = (βMetβdom dom π·)) |
10 | 7, 9 | eleqtrd 2834 | . . . 4 β’ (π· β (βMetβπ₯) β π· β (βMetβdom dom π·)) |
11 | 10 | rexlimivw 3150 | . . 3 β’ (βπ₯ β V π· β (βMetβπ₯) β π· β (βMetβdom dom π·)) |
12 | 6, 11 | sylbi 216 | . 2 β’ (π· β βͺ ran βMet β π· β (βMetβdom dom π·)) |
13 | fvssunirn 6925 | . . 3 β’ (βMetβdom dom π·) β βͺ ran βMet | |
14 | 13 | sseli 3979 | . 2 β’ (π· β (βMetβdom dom π·) β π· β βͺ ran βMet) |
15 | 12, 14 | impbii 208 | 1 β’ (π· β βͺ ran βMet β π· β (βMetβdom dom π·)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 βwrex 3069 {crab 3431 Vcvv 3473 βͺ cuni 4909 class class class wbr 5149 Γ cxp 5675 dom cdm 5677 ran crn 5678 Fn wfn 6539 βcfv 6544 (class class class)co 7412 βm cmap 8823 0cc0 11113 β*cxr 11252 β€ cle 11254 +π cxad 13095 βMetcxmet 21130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8825 df-xr 11257 df-xmet 21138 |
This theorem is referenced by: isxms2 24175 setsmstopn 24207 tngtopn 24388 cfili 25017 cfilfcls 25023 |
Copyright terms: Public domain | W3C validator |