| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmetunirn | Structured version Visualization version GIF version | ||
| Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| xmetunirn | ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7445 | . . . . . 6 ⊢ (ℝ* ↑m (𝑥 × 𝑥)) ∈ V | |
| 2 | 1 | rabex 5319 | . . . . 5 ⊢ {𝑑 ∈ (ℝ* ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V |
| 3 | df-xmet 21318 | . . . . 5 ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
| 4 | 2, 3 | fnmpti 6690 | . . . 4 ⊢ ∞Met Fn V |
| 5 | fnunirn 7255 | . . . 4 ⊢ (∞Met Fn V → (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)) |
| 7 | id 22 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥)) | |
| 8 | xmetdmdm 24289 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷) | |
| 9 | 8 | fveq2d 6889 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷)) |
| 10 | 7, 9 | eleqtrd 2835 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 11 | 10 | rexlimivw 3138 | . . 3 ⊢ (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 12 | 6, 11 | sylbi 217 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| 13 | fvssunirn 6918 | . . 3 ⊢ (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met | |
| 14 | 13 | sseli 3959 | . 2 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met) |
| 15 | 12, 14 | impbii 209 | 1 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 {crab 3419 Vcvv 3463 ∪ cuni 4887 class class class wbr 5123 × cxp 5663 dom cdm 5665 ran crn 5666 Fn wfn 6535 ‘cfv 6540 (class class class)co 7412 ↑m cmap 8847 0cc0 11136 ℝ*cxr 11275 ≤ cle 11277 +𝑒 cxad 13133 ∞Metcxmet 21310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8849 df-xr 11280 df-xmet 21318 |
| This theorem is referenced by: isxms2 24402 setsmstopn 24434 tngtopn 24606 cfili 25237 cfilfcls 25243 |
| Copyright terms: Public domain | W3C validator |