MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetunirn Structured version   Visualization version   GIF version

Theorem xmetunirn 22630
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))

Proof of Theorem xmetunirn
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7051 . . . . . 6 (ℝ*𝑚 (𝑥 × 𝑥)) ∈ V
21rabex 5129 . . . . 5 {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V
3 df-xmet 20220 . . . . 5 ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
42, 3fnmpti 6362 . . . 4 ∞Met Fn V
5 fnunirn 6880 . . . 4 (∞Met Fn V → (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)))
64, 5ax-mp 5 . . 3 (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))
7 id 22 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥))
8 xmetdmdm 22628 . . . . . 6 (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷)
98fveq2d 6545 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷))
107, 9eleqtrd 2884 . . . 4 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
1110rexlimivw 3244 . . 3 (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
126, 11sylbi 218 . 2 (𝐷 ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷))
13 fvssunirn 6570 . . 3 (∞Met‘dom dom 𝐷) ⊆ ran ∞Met
1413sseli 3887 . 2 (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ran ∞Met)
1512, 14impbii 210 1 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1522  wcel 2080  wral 3104  wrex 3105  {crab 3108  Vcvv 3436   cuni 4747   class class class wbr 4964   × cxp 5444  dom cdm 5446  ran crn 5447   Fn wfn 6223  cfv 6228  (class class class)co 7019  𝑚 cmap 8259  0cc0 10386  *cxr 10523  cle 10525   +𝑒 cxad 12355  ∞Metcxmet 20212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-rab 3113  df-v 3438  df-sbc 3708  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-op 4481  df-uni 4748  df-br 4965  df-opab 5027  df-mpt 5044  df-id 5351  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-fv 6236  df-ov 7022  df-oprab 7023  df-mpo 7024  df-map 8261  df-xr 10528  df-xmet 20220
This theorem is referenced by:  isxms2  22741  setsmstopn  22771  tngtopn  22942  cfili  23554  cfilfcls  23560
  Copyright terms: Public domain W3C validator