![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetunirn | Structured version Visualization version GIF version |
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
xmetunirn | ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7481 | . . . . . 6 ⊢ (ℝ* ↑m (𝑥 × 𝑥)) ∈ V | |
2 | 1 | rabex 5357 | . . . . 5 ⊢ {𝑑 ∈ (ℝ* ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V |
3 | df-xmet 21380 | . . . . 5 ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | |
4 | 2, 3 | fnmpti 6723 | . . . 4 ⊢ ∞Met Fn V |
5 | fnunirn 7291 | . . . 4 ⊢ (∞Met Fn V → (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)) |
7 | id 22 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥)) | |
8 | xmetdmdm 24366 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷) | |
9 | 8 | fveq2d 6924 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷)) |
10 | 7, 9 | eleqtrd 2846 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
11 | 10 | rexlimivw 3157 | . . 3 ⊢ (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
12 | 6, 11 | sylbi 217 | . 2 ⊢ (𝐷 ∈ ∪ ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
13 | fvssunirn 6953 | . . 3 ⊢ (∞Met‘dom dom 𝐷) ⊆ ∪ ran ∞Met | |
14 | 13 | sseli 4004 | . 2 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ∈ ∪ ran ∞Met) |
15 | 12, 14 | impbii 209 | 1 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ∪ cuni 4931 class class class wbr 5166 × cxp 5698 dom cdm 5700 ran crn 5701 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 0cc0 11184 ℝ*cxr 11323 ≤ cle 11325 +𝑒 cxad 13173 ∞Metcxmet 21372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-xr 11328 df-xmet 21380 |
This theorem is referenced by: isxms2 24479 setsmstopn 24511 tngtopn 24692 cfili 25321 cfilfcls 25327 |
Copyright terms: Public domain | W3C validator |