MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetunirn Structured version   Visualization version   GIF version

Theorem xmetunirn 24258
Description: Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
xmetunirn (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))

Proof of Theorem xmetunirn
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7402 . . . . . 6 (ℝ*m (𝑥 × 𝑥)) ∈ V
21rabex 5289 . . . . 5 {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))} ∈ V
3 df-xmet 21289 . . . . 5 ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
42, 3fnmpti 6643 . . . 4 ∞Met Fn V
5 fnunirn 7210 . . . 4 (∞Met Fn V → (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥)))
64, 5ax-mp 5 . . 3 (𝐷 ran ∞Met ↔ ∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥))
7 id 22 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘𝑥))
8 xmetdmdm 24256 . . . . . 6 (𝐷 ∈ (∞Met‘𝑥) → 𝑥 = dom dom 𝐷)
98fveq2d 6844 . . . . 5 (𝐷 ∈ (∞Met‘𝑥) → (∞Met‘𝑥) = (∞Met‘dom dom 𝐷))
107, 9eleqtrd 2830 . . . 4 (𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
1110rexlimivw 3130 . . 3 (∃𝑥 ∈ V 𝐷 ∈ (∞Met‘𝑥) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
126, 11sylbi 217 . 2 (𝐷 ran ∞Met → 𝐷 ∈ (∞Met‘dom dom 𝐷))
13 fvssunirn 6873 . . 3 (∞Met‘dom dom 𝐷) ⊆ ran ∞Met
1413sseli 3939 . 2 (𝐷 ∈ (∞Met‘dom dom 𝐷) → 𝐷 ran ∞Met)
1512, 14impbii 209 1 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3402  Vcvv 3444   cuni 4867   class class class wbr 5102   × cxp 5629  dom cdm 5631  ran crn 5632   Fn wfn 6494  cfv 6499  (class class class)co 7369  m cmap 8776  0cc0 11044  *cxr 11183  cle 11185   +𝑒 cxad 13046  ∞Metcxmet 21281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-xr 11188  df-xmet 21289
This theorem is referenced by:  isxms2  24369  setsmstopn  24399  tngtopn  24571  cfili  25201  cfilfcls  25207
  Copyright terms: Public domain W3C validator