![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetf | Structured version Visualization version GIF version |
Description: Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmetf | β’ (π· β (βMetβπ) β π·:(π Γ π)βΆβ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6925 | . . . 4 β’ (π· β (βMetβπ) β π β dom βMet) | |
2 | isxmet 23821 | . . . 4 β’ (π β dom βMet β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π· β (βMetβπ) β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
4 | 3 | ibi 266 | . 2 β’ (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
5 | 4 | simpld 495 | 1 β’ (π· β (βMetβπ) β π·:(π Γ π)βΆβ*) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5147 Γ cxp 5673 dom cdm 5675 βΆwf 6536 βcfv 6540 (class class class)co 7405 0cc0 11106 β*cxr 11243 β€ cle 11245 +π cxad 13086 βMetcxmet 20921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 df-xr 11248 df-xmet 20929 |
This theorem is referenced by: xmetcl 23828 xmetdmdm 23832 xmetpsmet 23845 xmettpos 23846 xmetres2 23858 xmetres 23861 imasdsf1olem 23870 xmeterval 23929 xmeter 23930 xmetresbl 23934 tmsval 23980 tmslem 23981 tmslemOLD 23982 tmsxms 23986 imasf1oxms 23989 comet 24013 stdbdxmet 24015 prdsxms 24030 xrsdsre 24317 xmetdcn2 24344 iscfil2 24774 caufval 24783 isbndx 36638 ssbnd 36644 ismtyval 36656 |
Copyright terms: Public domain | W3C validator |