MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetf Structured version   Visualization version   GIF version

Theorem xmetf 24179
Description: Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetf (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)

Proof of Theorem xmetf
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6919 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ dom ∞Met)
2 isxmet 24174 . . . 4 (𝑋 ∈ dom ∞Met β†’ (𝐷 ∈ (∞Metβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))))
31, 2syl 17 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷 ∈ (∞Metβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))))
43ibi 267 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))))
54simpld 494 1 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053   class class class wbr 5139   Γ— cxp 5665  dom cdm 5667  βŸΆwf 6530  β€˜cfv 6534  (class class class)co 7402  0cc0 11107  β„*cxr 11246   ≀ cle 11248   +𝑒 cxad 13091  βˆžMetcxmet 21219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-map 8819  df-xr 11251  df-xmet 21227
This theorem is referenced by:  xmetcl  24181  xmetdmdm  24185  xmetpsmet  24198  xmettpos  24199  xmetres2  24211  xmetres  24214  imasdsf1olem  24223  xmeterval  24282  xmeter  24283  xmetresbl  24287  tmsval  24333  tmslem  24334  tmslemOLD  24335  tmsxms  24339  imasf1oxms  24342  comet  24366  stdbdxmet  24368  prdsxms  24383  xrsdsre  24670  xmetdcn2  24697  iscfil2  25138  caufval  25147  isbndx  37154  ssbnd  37160  ismtyval  37172
  Copyright terms: Public domain W3C validator