MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdmdm Structured version   Visualization version   GIF version

Theorem metdmdm 24200
Description: Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
metdmdm (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷)

Proof of Theorem metdmdm
StepHypRef Expression
1 metxmet 24198 . 2 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 xmetdmdm 24199 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷)
31, 2syl 17 1 (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  dom cdm 5631  cfv 6499  ∞Metcxmet 21225  Metcmet 21226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-mulcl 11106  ax-i2m1 11112
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-xadd 13049  df-xmet 21233  df-met 21234
This theorem is referenced by:  metsscmetcld  25191
  Copyright terms: Public domain W3C validator