Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version |
Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismet2 23484 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 × cxp 5588 ⟶wf 6428 ‘cfv 6432 ℝcr 10871 ∞Metcxmet 20580 Metcmet 20581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-mulcl 10934 ax-i2m1 10940 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-xadd 12848 df-xmet 20588 df-met 20589 |
This theorem is referenced by: metdmdm 23487 meteq0 23490 mettri2 23492 met0 23494 metge0 23496 metsym 23501 metrtri 23508 metgt0 23510 metres2 23514 prdsmet 23521 imasf1omet 23527 blpnf 23548 bl2in 23551 isms2 23601 setsms 23633 tmsms 23641 metss2lem 23665 metss2 23666 methaus 23674 dscopn 23727 ngpocelbl 23866 cnxmet 23934 rexmet 23952 metdcn2 24000 metdsre 24014 metdscn2 24018 lebnumlem1 24122 lebnumlem2 24123 lebnumlem3 24124 lebnum 24125 xlebnum 24126 cmetcaulem 24450 cmetcau 24451 iscmet3lem1 24453 iscmet3lem2 24454 iscmet3 24455 equivcfil 24461 equivcau 24462 metsscmetcld 24477 cmetss 24478 relcmpcmet 24480 cmpcmet 24481 cncmet 24484 bcthlem2 24487 bcthlem3 24488 bcthlem4 24489 bcthlem5 24490 bcth2 24492 bcth3 24493 cmetcusp1 24515 cmetcusp 24516 minveclem3 24591 imsxmet 29050 blocni 29163 ubthlem1 29228 ubthlem2 29229 minvecolem4a 29235 hhxmet 29533 hilxmet 29553 fmcncfil 31877 blssp 35910 lmclim2 35912 geomcau 35913 caures 35914 caushft 35915 sstotbnd2 35928 equivtotbnd 35932 isbndx 35936 isbnd3 35938 ssbnd 35942 totbndbnd 35943 prdstotbnd 35948 prdsbnd2 35949 heibor1lem 35963 heibor1 35964 heiborlem3 35967 heiborlem6 35970 heiborlem8 35972 heiborlem9 35973 heiborlem10 35974 heibor 35975 bfplem1 35976 bfplem2 35977 rrncmslem 35986 ismrer1 35992 reheibor 35993 metpsmet 42611 qndenserrnbllem 43806 qndenserrnbl 43807 qndenserrnopnlem 43809 rrndsxmet 43815 hoiqssbllem2 44132 hoiqssbl 44134 opnvonmbllem2 44142 |
Copyright terms: Public domain | W3C validator |