| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version | ||
| Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismet2 24249 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 × cxp 5614 ⟶wf 6477 ‘cfv 6481 ℝcr 11005 ∞Metcxmet 21277 Metcmet 21278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-xadd 13012 df-xmet 21285 df-met 21286 |
| This theorem is referenced by: metdmdm 24252 meteq0 24255 mettri2 24257 met0 24259 metge0 24261 metsym 24266 metrtri 24273 metgt0 24275 metres2 24279 prdsmet 24286 imasf1omet 24292 blpnf 24313 bl2in 24316 isms2 24366 setsms 24396 tmsms 24403 metss2lem 24427 metss2 24428 methaus 24436 dscopn 24489 ngpocelbl 24620 cnxmet 24688 rexmet 24707 metdcn2 24756 metdsre 24770 metdscn2 24774 lebnumlem1 24888 lebnumlem2 24889 lebnumlem3 24890 lebnum 24891 xlebnum 24892 cmetcaulem 25216 cmetcau 25217 iscmet3lem1 25219 iscmet3lem2 25220 iscmet3 25221 equivcfil 25227 equivcau 25228 metsscmetcld 25243 cmetss 25244 relcmpcmet 25246 cmpcmet 25247 cncmet 25250 bcthlem2 25253 bcthlem3 25254 bcthlem4 25255 bcthlem5 25256 bcth2 25258 bcth3 25259 cmetcusp1 25281 cmetcusp 25282 minveclem3 25357 imsxmet 30670 blocni 30783 ubthlem1 30848 ubthlem2 30849 minvecolem4a 30855 hhxmet 31153 hilxmet 31173 fmcncfil 33942 blssp 37802 lmclim2 37804 geomcau 37805 caures 37806 caushft 37807 sstotbnd2 37820 equivtotbnd 37824 isbndx 37828 isbnd3 37830 ssbnd 37834 totbndbnd 37835 prdstotbnd 37840 prdsbnd2 37841 heibor1lem 37855 heibor1 37856 heiborlem3 37859 heiborlem6 37862 heiborlem8 37864 heiborlem9 37865 heiborlem10 37866 heibor 37867 bfplem1 37868 bfplem2 37869 rrncmslem 37878 ismrer1 37884 reheibor 37885 metpsmet 45134 qndenserrnbllem 46338 qndenserrnbl 46339 qndenserrnopnlem 46341 rrndsxmet 46347 hoiqssbllem2 46667 hoiqssbl 46669 opnvonmbllem2 46677 |
| Copyright terms: Public domain | W3C validator |