| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version | ||
| Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismet2 24237 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 × cxp 5621 ⟶wf 6482 ‘cfv 6486 ℝcr 11027 ∞Metcxmet 21264 Metcmet 21265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-xadd 13033 df-xmet 21272 df-met 21273 |
| This theorem is referenced by: metdmdm 24240 meteq0 24243 mettri2 24245 met0 24247 metge0 24249 metsym 24254 metrtri 24261 metgt0 24263 metres2 24267 prdsmet 24274 imasf1omet 24280 blpnf 24301 bl2in 24304 isms2 24354 setsms 24384 tmsms 24391 metss2lem 24415 metss2 24416 methaus 24424 dscopn 24477 ngpocelbl 24608 cnxmet 24676 rexmet 24695 metdcn2 24744 metdsre 24758 metdscn2 24762 lebnumlem1 24876 lebnumlem2 24877 lebnumlem3 24878 lebnum 24879 xlebnum 24880 cmetcaulem 25204 cmetcau 25205 iscmet3lem1 25207 iscmet3lem2 25208 iscmet3 25209 equivcfil 25215 equivcau 25216 metsscmetcld 25231 cmetss 25232 relcmpcmet 25234 cmpcmet 25235 cncmet 25238 bcthlem2 25241 bcthlem3 25242 bcthlem4 25243 bcthlem5 25244 bcth2 25246 bcth3 25247 cmetcusp1 25269 cmetcusp 25270 minveclem3 25345 imsxmet 30654 blocni 30767 ubthlem1 30832 ubthlem2 30833 minvecolem4a 30839 hhxmet 31137 hilxmet 31157 fmcncfil 33897 blssp 37735 lmclim2 37737 geomcau 37738 caures 37739 caushft 37740 sstotbnd2 37753 equivtotbnd 37757 isbndx 37761 isbnd3 37763 ssbnd 37767 totbndbnd 37768 prdstotbnd 37773 prdsbnd2 37774 heibor1lem 37788 heibor1 37789 heiborlem3 37792 heiborlem6 37795 heiborlem8 37797 heiborlem9 37798 heiborlem10 37799 heibor 37800 bfplem1 37801 bfplem2 37802 rrncmslem 37811 ismrer1 37817 reheibor 37818 metpsmet 45069 qndenserrnbllem 46276 qndenserrnbl 46277 qndenserrnopnlem 46279 rrndsxmet 46285 hoiqssbllem2 46605 hoiqssbl 46607 opnvonmbllem2 46615 |
| Copyright terms: Public domain | W3C validator |