| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version | ||
| Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismet2 24221 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 × cxp 5636 ⟶wf 6507 ‘cfv 6511 ℝcr 11067 ∞Metcxmet 21249 Metcmet 21250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-xadd 13073 df-xmet 21257 df-met 21258 |
| This theorem is referenced by: metdmdm 24224 meteq0 24227 mettri2 24229 met0 24231 metge0 24233 metsym 24238 metrtri 24245 metgt0 24247 metres2 24251 prdsmet 24258 imasf1omet 24264 blpnf 24285 bl2in 24288 isms2 24338 setsms 24368 tmsms 24375 metss2lem 24399 metss2 24400 methaus 24408 dscopn 24461 ngpocelbl 24592 cnxmet 24660 rexmet 24679 metdcn2 24728 metdsre 24742 metdscn2 24746 lebnumlem1 24860 lebnumlem2 24861 lebnumlem3 24862 lebnum 24863 xlebnum 24864 cmetcaulem 25188 cmetcau 25189 iscmet3lem1 25191 iscmet3lem2 25192 iscmet3 25193 equivcfil 25199 equivcau 25200 metsscmetcld 25215 cmetss 25216 relcmpcmet 25218 cmpcmet 25219 cncmet 25222 bcthlem2 25225 bcthlem3 25226 bcthlem4 25227 bcthlem5 25228 bcth2 25230 bcth3 25231 cmetcusp1 25253 cmetcusp 25254 minveclem3 25329 imsxmet 30621 blocni 30734 ubthlem1 30799 ubthlem2 30800 minvecolem4a 30806 hhxmet 31104 hilxmet 31124 fmcncfil 33921 blssp 37750 lmclim2 37752 geomcau 37753 caures 37754 caushft 37755 sstotbnd2 37768 equivtotbnd 37772 isbndx 37776 isbnd3 37778 ssbnd 37782 totbndbnd 37783 prdstotbnd 37788 prdsbnd2 37789 heibor1lem 37803 heibor1 37804 heiborlem3 37807 heiborlem6 37810 heiborlem8 37812 heiborlem9 37813 heiborlem10 37814 heibor 37815 bfplem1 37816 bfplem2 37817 rrncmslem 37826 ismrer1 37832 reheibor 37833 metpsmet 45085 qndenserrnbllem 46292 qndenserrnbl 46293 qndenserrnopnlem 46295 rrndsxmet 46301 hoiqssbllem2 46621 hoiqssbl 46623 opnvonmbllem2 46631 |
| Copyright terms: Public domain | W3C validator |