Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version |
Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismet2 23394 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 × cxp 5578 ⟶wf 6414 ‘cfv 6418 ℝcr 10801 ∞Metcxmet 20495 Metcmet 20496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-xadd 12778 df-xmet 20503 df-met 20504 |
This theorem is referenced by: metdmdm 23397 meteq0 23400 mettri2 23402 met0 23404 metge0 23406 metsym 23411 metrtri 23418 metgt0 23420 metres2 23424 prdsmet 23431 imasf1omet 23437 blpnf 23458 bl2in 23461 isms2 23511 setsms 23541 tmsms 23549 metss2lem 23573 metss2 23574 methaus 23582 dscopn 23635 ngpocelbl 23774 cnxmet 23842 rexmet 23860 metdcn2 23908 metdsre 23922 metdscn2 23926 lebnumlem1 24030 lebnumlem2 24031 lebnumlem3 24032 lebnum 24033 xlebnum 24034 cmetcaulem 24357 cmetcau 24358 iscmet3lem1 24360 iscmet3lem2 24361 iscmet3 24362 equivcfil 24368 equivcau 24369 metsscmetcld 24384 cmetss 24385 relcmpcmet 24387 cmpcmet 24388 cncmet 24391 bcthlem2 24394 bcthlem3 24395 bcthlem4 24396 bcthlem5 24397 bcth2 24399 bcth3 24400 cmetcusp1 24422 cmetcusp 24423 minveclem3 24498 imsxmet 28955 blocni 29068 ubthlem1 29133 ubthlem2 29134 minvecolem4a 29140 hhxmet 29438 hilxmet 29458 fmcncfil 31783 blssp 35841 lmclim2 35843 geomcau 35844 caures 35845 caushft 35846 sstotbnd2 35859 equivtotbnd 35863 isbndx 35867 isbnd3 35869 ssbnd 35873 totbndbnd 35874 prdstotbnd 35879 prdsbnd2 35880 heibor1lem 35894 heibor1 35895 heiborlem3 35898 heiborlem6 35901 heiborlem8 35903 heiborlem9 35904 heiborlem10 35905 heibor 35906 bfplem1 35907 bfplem2 35908 rrncmslem 35917 ismrer1 35923 reheibor 35924 metpsmet 42530 qndenserrnbllem 43725 qndenserrnbl 43726 qndenserrnopnlem 43728 rrndsxmet 43734 hoiqssbllem2 44051 hoiqssbl 44053 opnvonmbllem2 44061 |
Copyright terms: Public domain | W3C validator |