![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version |
Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismet2 24364 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 × cxp 5698 ⟶wf 6569 ‘cfv 6573 ℝcr 11183 ∞Metcxmet 21372 Metcmet 21373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-xadd 13176 df-xmet 21380 df-met 21381 |
This theorem is referenced by: metdmdm 24367 meteq0 24370 mettri2 24372 met0 24374 metge0 24376 metsym 24381 metrtri 24388 metgt0 24390 metres2 24394 prdsmet 24401 imasf1omet 24407 blpnf 24428 bl2in 24431 isms2 24481 setsms 24513 tmsms 24521 metss2lem 24545 metss2 24546 methaus 24554 dscopn 24607 ngpocelbl 24746 cnxmet 24814 rexmet 24832 metdcn2 24880 metdsre 24894 metdscn2 24898 lebnumlem1 25012 lebnumlem2 25013 lebnumlem3 25014 lebnum 25015 xlebnum 25016 cmetcaulem 25341 cmetcau 25342 iscmet3lem1 25344 iscmet3lem2 25345 iscmet3 25346 equivcfil 25352 equivcau 25353 metsscmetcld 25368 cmetss 25369 relcmpcmet 25371 cmpcmet 25372 cncmet 25375 bcthlem2 25378 bcthlem3 25379 bcthlem4 25380 bcthlem5 25381 bcth2 25383 bcth3 25384 cmetcusp1 25406 cmetcusp 25407 minveclem3 25482 imsxmet 30724 blocni 30837 ubthlem1 30902 ubthlem2 30903 minvecolem4a 30909 hhxmet 31207 hilxmet 31227 fmcncfil 33877 blssp 37716 lmclim2 37718 geomcau 37719 caures 37720 caushft 37721 sstotbnd2 37734 equivtotbnd 37738 isbndx 37742 isbnd3 37744 ssbnd 37748 totbndbnd 37749 prdstotbnd 37754 prdsbnd2 37755 heibor1lem 37769 heibor1 37770 heiborlem3 37773 heiborlem6 37776 heiborlem8 37778 heiborlem9 37779 heiborlem10 37780 heibor 37781 bfplem1 37782 bfplem2 37783 rrncmslem 37792 ismrer1 37798 reheibor 37799 metpsmet 44993 qndenserrnbllem 46215 qndenserrnbl 46216 qndenserrnopnlem 46218 rrndsxmet 46224 hoiqssbllem2 46544 hoiqssbl 46546 opnvonmbllem2 46554 |
Copyright terms: Public domain | W3C validator |