![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version |
Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismet2 24358 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 × cxp 5686 ⟶wf 6558 ‘cfv 6562 ℝcr 11151 ∞Metcxmet 21366 Metcmet 21367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-i2m1 11220 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-xadd 13152 df-xmet 21374 df-met 21375 |
This theorem is referenced by: metdmdm 24361 meteq0 24364 mettri2 24366 met0 24368 metge0 24370 metsym 24375 metrtri 24382 metgt0 24384 metres2 24388 prdsmet 24395 imasf1omet 24401 blpnf 24422 bl2in 24425 isms2 24475 setsms 24507 tmsms 24515 metss2lem 24539 metss2 24540 methaus 24548 dscopn 24601 ngpocelbl 24740 cnxmet 24808 rexmet 24826 metdcn2 24874 metdsre 24888 metdscn2 24892 lebnumlem1 25006 lebnumlem2 25007 lebnumlem3 25008 lebnum 25009 xlebnum 25010 cmetcaulem 25335 cmetcau 25336 iscmet3lem1 25338 iscmet3lem2 25339 iscmet3 25340 equivcfil 25346 equivcau 25347 metsscmetcld 25362 cmetss 25363 relcmpcmet 25365 cmpcmet 25366 cncmet 25369 bcthlem2 25372 bcthlem3 25373 bcthlem4 25374 bcthlem5 25375 bcth2 25377 bcth3 25378 cmetcusp1 25400 cmetcusp 25401 minveclem3 25476 imsxmet 30720 blocni 30833 ubthlem1 30898 ubthlem2 30899 minvecolem4a 30905 hhxmet 31203 hilxmet 31223 fmcncfil 33891 blssp 37742 lmclim2 37744 geomcau 37745 caures 37746 caushft 37747 sstotbnd2 37760 equivtotbnd 37764 isbndx 37768 isbnd3 37770 ssbnd 37774 totbndbnd 37775 prdstotbnd 37780 prdsbnd2 37781 heibor1lem 37795 heibor1 37796 heiborlem3 37799 heiborlem6 37802 heiborlem8 37804 heiborlem9 37805 heiborlem10 37806 heibor 37807 bfplem1 37808 bfplem2 37809 rrncmslem 37818 ismrer1 37824 reheibor 37825 metpsmet 45030 qndenserrnbllem 46249 qndenserrnbl 46250 qndenserrnopnlem 46252 rrndsxmet 46258 hoiqssbllem2 46578 hoiqssbl 46580 opnvonmbllem2 46588 |
Copyright terms: Public domain | W3C validator |