| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version | ||
| Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismet2 24270 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 × cxp 5652 ⟶wf 6526 ‘cfv 6530 ℝcr 11126 ∞Metcxmet 21298 Metcmet 21299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-mulcl 11189 ax-i2m1 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-xadd 13127 df-xmet 21306 df-met 21307 |
| This theorem is referenced by: metdmdm 24273 meteq0 24276 mettri2 24278 met0 24280 metge0 24282 metsym 24287 metrtri 24294 metgt0 24296 metres2 24300 prdsmet 24307 imasf1omet 24313 blpnf 24334 bl2in 24337 isms2 24387 setsms 24417 tmsms 24424 metss2lem 24448 metss2 24449 methaus 24457 dscopn 24510 ngpocelbl 24641 cnxmet 24709 rexmet 24728 metdcn2 24777 metdsre 24791 metdscn2 24795 lebnumlem1 24909 lebnumlem2 24910 lebnumlem3 24911 lebnum 24912 xlebnum 24913 cmetcaulem 25238 cmetcau 25239 iscmet3lem1 25241 iscmet3lem2 25242 iscmet3 25243 equivcfil 25249 equivcau 25250 metsscmetcld 25265 cmetss 25266 relcmpcmet 25268 cmpcmet 25269 cncmet 25272 bcthlem2 25275 bcthlem3 25276 bcthlem4 25277 bcthlem5 25278 bcth2 25280 bcth3 25281 cmetcusp1 25303 cmetcusp 25304 minveclem3 25379 imsxmet 30619 blocni 30732 ubthlem1 30797 ubthlem2 30798 minvecolem4a 30804 hhxmet 31102 hilxmet 31122 fmcncfil 33908 blssp 37726 lmclim2 37728 geomcau 37729 caures 37730 caushft 37731 sstotbnd2 37744 equivtotbnd 37748 isbndx 37752 isbnd3 37754 ssbnd 37758 totbndbnd 37759 prdstotbnd 37764 prdsbnd2 37765 heibor1lem 37779 heibor1 37780 heiborlem3 37783 heiborlem6 37786 heiborlem8 37788 heiborlem9 37789 heiborlem10 37790 heibor 37791 bfplem1 37792 bfplem2 37793 rrncmslem 37802 ismrer1 37808 reheibor 37809 metpsmet 45063 qndenserrnbllem 46271 qndenserrnbl 46272 qndenserrnopnlem 46274 rrndsxmet 46280 hoiqssbllem2 46600 hoiqssbl 46602 opnvonmbllem2 46610 |
| Copyright terms: Public domain | W3C validator |