Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version |
Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismet2 23486 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 × cxp 5587 ⟶wf 6429 ‘cfv 6433 ℝcr 10870 ∞Metcxmet 20582 Metcmet 20583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-xadd 12849 df-xmet 20590 df-met 20591 |
This theorem is referenced by: metdmdm 23489 meteq0 23492 mettri2 23494 met0 23496 metge0 23498 metsym 23503 metrtri 23510 metgt0 23512 metres2 23516 prdsmet 23523 imasf1omet 23529 blpnf 23550 bl2in 23553 isms2 23603 setsms 23635 tmsms 23643 metss2lem 23667 metss2 23668 methaus 23676 dscopn 23729 ngpocelbl 23868 cnxmet 23936 rexmet 23954 metdcn2 24002 metdsre 24016 metdscn2 24020 lebnumlem1 24124 lebnumlem2 24125 lebnumlem3 24126 lebnum 24127 xlebnum 24128 cmetcaulem 24452 cmetcau 24453 iscmet3lem1 24455 iscmet3lem2 24456 iscmet3 24457 equivcfil 24463 equivcau 24464 metsscmetcld 24479 cmetss 24480 relcmpcmet 24482 cmpcmet 24483 cncmet 24486 bcthlem2 24489 bcthlem3 24490 bcthlem4 24491 bcthlem5 24492 bcth2 24494 bcth3 24495 cmetcusp1 24517 cmetcusp 24518 minveclem3 24593 imsxmet 29054 blocni 29167 ubthlem1 29232 ubthlem2 29233 minvecolem4a 29239 hhxmet 29537 hilxmet 29557 fmcncfil 31881 blssp 35914 lmclim2 35916 geomcau 35917 caures 35918 caushft 35919 sstotbnd2 35932 equivtotbnd 35936 isbndx 35940 isbnd3 35942 ssbnd 35946 totbndbnd 35947 prdstotbnd 35952 prdsbnd2 35953 heibor1lem 35967 heibor1 35968 heiborlem3 35971 heiborlem6 35974 heiborlem8 35976 heiborlem9 35977 heiborlem10 35978 heibor 35979 bfplem1 35980 bfplem2 35981 rrncmslem 35990 ismrer1 35996 reheibor 35997 metpsmet 42641 qndenserrnbllem 43835 qndenserrnbl 43836 qndenserrnopnlem 43838 rrndsxmet 43844 hoiqssbllem2 44161 hoiqssbl 44163 opnvonmbllem2 44171 |
Copyright terms: Public domain | W3C validator |