| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version | ||
| Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismet2 24228 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 × cxp 5639 ⟶wf 6510 ‘cfv 6514 ℝcr 11074 ∞Metcxmet 21256 Metcmet 21257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-i2m1 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-xadd 13080 df-xmet 21264 df-met 21265 |
| This theorem is referenced by: metdmdm 24231 meteq0 24234 mettri2 24236 met0 24238 metge0 24240 metsym 24245 metrtri 24252 metgt0 24254 metres2 24258 prdsmet 24265 imasf1omet 24271 blpnf 24292 bl2in 24295 isms2 24345 setsms 24375 tmsms 24382 metss2lem 24406 metss2 24407 methaus 24415 dscopn 24468 ngpocelbl 24599 cnxmet 24667 rexmet 24686 metdcn2 24735 metdsre 24749 metdscn2 24753 lebnumlem1 24867 lebnumlem2 24868 lebnumlem3 24869 lebnum 24870 xlebnum 24871 cmetcaulem 25195 cmetcau 25196 iscmet3lem1 25198 iscmet3lem2 25199 iscmet3 25200 equivcfil 25206 equivcau 25207 metsscmetcld 25222 cmetss 25223 relcmpcmet 25225 cmpcmet 25226 cncmet 25229 bcthlem2 25232 bcthlem3 25233 bcthlem4 25234 bcthlem5 25235 bcth2 25237 bcth3 25238 cmetcusp1 25260 cmetcusp 25261 minveclem3 25336 imsxmet 30628 blocni 30741 ubthlem1 30806 ubthlem2 30807 minvecolem4a 30813 hhxmet 31111 hilxmet 31131 fmcncfil 33928 blssp 37757 lmclim2 37759 geomcau 37760 caures 37761 caushft 37762 sstotbnd2 37775 equivtotbnd 37779 isbndx 37783 isbnd3 37785 ssbnd 37789 totbndbnd 37790 prdstotbnd 37795 prdsbnd2 37796 heibor1lem 37810 heibor1 37811 heiborlem3 37814 heiborlem6 37817 heiborlem8 37819 heiborlem9 37820 heiborlem10 37821 heibor 37822 bfplem1 37823 bfplem2 37824 rrncmslem 37833 ismrer1 37839 reheibor 37840 metpsmet 45092 qndenserrnbllem 46299 qndenserrnbl 46300 qndenserrnopnlem 46302 rrndsxmet 46308 hoiqssbllem2 46628 hoiqssbl 46630 opnvonmbllem2 46638 |
| Copyright terms: Public domain | W3C validator |