| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metxmet | Structured version Visualization version GIF version | ||
| Description: A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| metxmet | ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismet2 24251 | . 2 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 × cxp 5619 ⟶wf 6484 ‘cfv 6488 ℝcr 11014 ∞Metcxmet 21280 Metcmet 21281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-mulcl 11077 ax-i2m1 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-xadd 13016 df-xmet 21288 df-met 21289 |
| This theorem is referenced by: metdmdm 24254 meteq0 24257 mettri2 24259 met0 24261 metge0 24263 metsym 24268 metrtri 24275 metgt0 24277 metres2 24281 prdsmet 24288 imasf1omet 24294 blpnf 24315 bl2in 24318 isms2 24368 setsms 24398 tmsms 24405 metss2lem 24429 metss2 24430 methaus 24438 dscopn 24491 ngpocelbl 24622 cnxmet 24690 rexmet 24709 metdcn2 24758 metdsre 24772 metdscn2 24776 lebnumlem1 24890 lebnumlem2 24891 lebnumlem3 24892 lebnum 24893 xlebnum 24894 cmetcaulem 25218 cmetcau 25219 iscmet3lem1 25221 iscmet3lem2 25222 iscmet3 25223 equivcfil 25229 equivcau 25230 metsscmetcld 25245 cmetss 25246 relcmpcmet 25248 cmpcmet 25249 cncmet 25252 bcthlem2 25255 bcthlem3 25256 bcthlem4 25257 bcthlem5 25258 bcth2 25260 bcth3 25261 cmetcusp1 25283 cmetcusp 25284 minveclem3 25359 imsxmet 30676 blocni 30789 ubthlem1 30854 ubthlem2 30855 minvecolem4a 30861 hhxmet 31159 hilxmet 31179 fmcncfil 33967 blssp 37819 lmclim2 37821 geomcau 37822 caures 37823 caushft 37824 sstotbnd2 37837 equivtotbnd 37841 isbndx 37845 isbnd3 37847 ssbnd 37851 totbndbnd 37852 prdstotbnd 37857 prdsbnd2 37858 heibor1lem 37872 heibor1 37873 heiborlem3 37876 heiborlem6 37879 heiborlem8 37881 heiborlem9 37882 heiborlem10 37883 heibor 37884 bfplem1 37885 bfplem2 37886 rrncmslem 37895 ismrer1 37901 reheibor 37902 metpsmet 45215 qndenserrnbllem 46419 qndenserrnbl 46420 qndenserrnopnlem 46422 rrndsxmet 46428 hoiqssbllem2 46748 hoiqssbl 46750 opnvonmbllem2 46758 |
| Copyright terms: Public domain | W3C validator |