MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem2 Structured version   Visualization version   GIF version

Theorem ang180lem2 25388
Description: Lemma for ang180 25392. Show that the revolution number 𝑁 is strictly between -2 and 1. Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl 25153, but the resulting bound gives only 𝑁 ≤ 1 for the upper bound. The case 𝑁 = 1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 must lie on the negative real axis, which is a contradiction because clearly if 𝐴 is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem2
StepHypRef Expression
1 2cn 11713 . . . . . . 7 2 ∈ ℂ
2 1re 10641 . . . . . . . . 9 1 ∈ ℝ
32rehalfcli 11887 . . . . . . . 8 (1 / 2) ∈ ℝ
43recni 10655 . . . . . . 7 (1 / 2) ∈ ℂ
51, 4negsubdii 10971 . . . . . 6 -(2 − (1 / 2)) = (-2 + (1 / 2))
6 4d2e2 11808 . . . . . . . . 9 (4 / 2) = 2
76oveq1i 7166 . . . . . . . 8 ((4 / 2) − (1 / 2)) = (2 − (1 / 2))
8 4cn 11723 . . . . . . . . . 10 4 ∈ ℂ
9 ax-1cn 10595 . . . . . . . . . 10 1 ∈ ℂ
10 2cnne0 11848 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 ≠ 0)
11 divsubdir 11334 . . . . . . . . . 10 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((4 − 1) / 2) = ((4 / 2) − (1 / 2)))
128, 9, 10, 11mp3an 1457 . . . . . . . . 9 ((4 − 1) / 2) = ((4 / 2) − (1 / 2))
13 4m1e3 11767 . . . . . . . . . 10 (4 − 1) = 3
1413oveq1i 7166 . . . . . . . . 9 ((4 − 1) / 2) = (3 / 2)
1512, 14eqtr3i 2846 . . . . . . . 8 ((4 / 2) − (1 / 2)) = (3 / 2)
167, 15eqtr3i 2846 . . . . . . 7 (2 − (1 / 2)) = (3 / 2)
1716negeqi 10879 . . . . . 6 -(2 − (1 / 2)) = -(3 / 2)
185, 17eqtr3i 2846 . . . . 5 (-2 + (1 / 2)) = -(3 / 2)
19 3re 11718 . . . . . . . . . . . . 13 3 ∈ ℝ
2019rehalfcli 11887 . . . . . . . . . . . 12 (3 / 2) ∈ ℝ
2120recni 10655 . . . . . . . . . . 11 (3 / 2) ∈ ℂ
22 picn 25045 . . . . . . . . . . 11 π ∈ ℂ
2321, 1, 22mulassi 10652 . . . . . . . . . 10 (((3 / 2) · 2) · π) = ((3 / 2) · (2 · π))
24 3cn 11719 . . . . . . . . . . . 12 3 ∈ ℂ
25 2ne0 11742 . . . . . . . . . . . 12 2 ≠ 0
2624, 1, 25divcan1i 11384 . . . . . . . . . . 11 ((3 / 2) · 2) = 3
2726oveq1i 7166 . . . . . . . . . 10 (((3 / 2) · 2) · π) = (3 · π)
2823, 27eqtr3i 2846 . . . . . . . . 9 ((3 / 2) · (2 · π)) = (3 · π)
2928negeqi 10879 . . . . . . . 8 -((3 / 2) · (2 · π)) = -(3 · π)
30 2re 11712 . . . . . . . . . . 11 2 ∈ ℝ
31 pire 25044 . . . . . . . . . . 11 π ∈ ℝ
3230, 31remulcli 10657 . . . . . . . . . 10 (2 · π) ∈ ℝ
3332recni 10655 . . . . . . . . 9 (2 · π) ∈ ℂ
3421, 33mulneg1i 11086 . . . . . . . 8 (-(3 / 2) · (2 · π)) = -((3 / 2) · (2 · π))
3524, 22mulneg2i 11087 . . . . . . . 8 (3 · -π) = -(3 · π)
3629, 34, 353eqtr4i 2854 . . . . . . 7 (-(3 / 2) · (2 · π)) = (3 · -π)
3731renegcli 10947 . . . . . . . . . . . 12 -π ∈ ℝ
3830, 37remulcli 10657 . . . . . . . . . . 11 (2 · -π) ∈ ℝ
3938a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) ∈ ℝ)
4037a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π ∈ ℝ)
41 simp1 1132 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
42 subcl 10885 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
439, 41, 42sylancr 589 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
44 simp3 1134 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
4544necomd 3071 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
46 subeq0 10912 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
479, 41, 46sylancr 589 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
4847necon3bid 3060 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
4945, 48mpbird 259 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
5043, 49reccld 11409 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
5143, 49recne0d 11410 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
5250, 51logcld 25154 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
53 subcl 10885 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
5441, 9, 53sylancl 588 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
55 simp2 1133 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
5654, 41, 55divcld 11416 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
57 subeq0 10912 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
5841, 9, 57sylancl 588 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
5958necon3bid 3060 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
6044, 59mpbird 259 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
6154, 41, 60, 55divne0d 11432 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
6256, 61logcld 25154 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
6352, 62addcld 10660 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
6463imcld 14554 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ)
65 logcl 25152 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
66653adant3 1128 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
6766imcld 14554 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ∈ ℝ)
6852imcld 14554 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1 / (1 − 𝐴)))) ∈ ℝ)
6962imcld 14554 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∈ ℝ)
7050, 51logimcld 25155 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘(1 / (1 − 𝐴)))) ∧ (ℑ‘(log‘(1 / (1 − 𝐴)))) ≤ π))
7170simpld 497 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘(1 / (1 − 𝐴)))))
7256, 61logimcld 25155 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∧ (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π))
7372simpld 497 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘((𝐴 − 1) / 𝐴))))
7440, 40, 68, 69, 71, 73lt2addd 11263 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π + -π) < ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
75 negpicn 25048 . . . . . . . . . . . . 13 -π ∈ ℂ
76752timesi 11776 . . . . . . . . . . . 12 (2 · -π) = (-π + -π)
7776a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) = (-π + -π))
7852, 62imaddd 14574 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
7974, 77, 783brtr4d 5098 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) < (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))
80 logimcl 25153 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
81803adant3 1128 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
8281simpld 497 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘𝐴)))
8339, 40, 64, 67, 79, 82lt2addd 11263 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · -π) + -π) < ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
84 df-3 11702 . . . . . . . . . . . 12 3 = (2 + 1)
8584oveq1i 7166 . . . . . . . . . . 11 (3 · -π) = ((2 + 1) · -π)
861, 9, 75adddiri 10654 . . . . . . . . . . 11 ((2 + 1) · -π) = ((2 · -π) + (1 · -π))
8775mulid2i 10646 . . . . . . . . . . . 12 (1 · -π) = -π
8887oveq2i 7167 . . . . . . . . . . 11 ((2 · -π) + (1 · -π)) = ((2 · -π) + -π)
8985, 86, 883eqtri 2848 . . . . . . . . . 10 (3 · -π) = ((2 · -π) + -π)
9089a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) = ((2 · -π) + -π))
91 ang180lem1.2 . . . . . . . . . . 11 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
9291fveq2i 6673 . . . . . . . . . 10 (ℑ‘𝑇) = (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)))
9363, 66imaddd 14574 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
9492, 93syl5eq 2868 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
9583, 90, 943brtr4d 5098 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) < (ℑ‘𝑇))
9663, 66addcld 10660 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
9791, 96eqeltrid 2917 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
98 imval 14466 . . . . . . . . . 10 (𝑇 ∈ ℂ → (ℑ‘𝑇) = (ℜ‘(𝑇 / i)))
9997, 98syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (ℜ‘(𝑇 / i)))
100 ang.1 . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
101 ang180lem1.3 . . . . . . . . . . . 12 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
102100, 91, 101ang180lem1 25387 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
103102simprd 498 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ)
104103rered 14583 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℜ‘(𝑇 / i)) = (𝑇 / i))
10599, 104eqtrd 2856 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (𝑇 / i))
10695, 105breqtrd 5092 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) < (𝑇 / i))
10736, 106eqbrtrid 5101 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(3 / 2) · (2 · π)) < (𝑇 / i))
10820renegcli 10947 . . . . . . . 8 -(3 / 2) ∈ ℝ
109108a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) ∈ ℝ)
11032a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℝ)
111 2pos 11741 . . . . . . . . 9 0 < 2
112 pipos 25046 . . . . . . . . 9 0 < π
11330, 31, 111, 112mulgt0ii 10773 . . . . . . . 8 0 < (2 · π)
114113a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 < (2 · π))
115 ltmuldiv 11513 . . . . . . 7 ((-(3 / 2) ∈ ℝ ∧ (𝑇 / i) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) < ((𝑇 / i) / (2 · π))))
116109, 103, 110, 114, 115syl112anc 1370 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) < ((𝑇 / i) / (2 · π))))
117107, 116mpbid 234 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) < ((𝑇 / i) / (2 · π)))
11818, 117eqbrtrid 5101 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 + (1 / 2)) < ((𝑇 / i) / (2 · π)))
11930renegcli 10947 . . . . . 6 -2 ∈ ℝ
120119a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 ∈ ℝ)
1213a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / 2) ∈ ℝ)
12232, 113gt0ne0ii 11176 . . . . . . 7 (2 · π) ≠ 0
123122a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
124103, 110, 123redivcld 11468 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℝ)
125120, 121, 124ltaddsubd 11240 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-2 + (1 / 2)) < ((𝑇 / i) / (2 · π)) ↔ -2 < (((𝑇 / i) / (2 · π)) − (1 / 2))))
126118, 125mpbid 234 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < (((𝑇 / i) / (2 · π)) − (1 / 2)))
127126, 101breqtrrdi 5108 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁)
12831a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈ ℝ)
12970simprd 498 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1 / (1 − 𝐴)))) ≤ π)
13072simprd 498 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π)
13168, 69, 128, 128, 129, 130le2addd 11259 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))) ≤ (π + π))
132222timesi 11776 . . . . . . . . . . . 12 (2 · π) = (π + π)
133132a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) = (π + π))
134131, 78, 1333brtr4d 5098 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π))
13581simprd 498 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ≤ π)
13664, 67, 110, 128, 134, 135le2addd 11259 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))) ≤ ((2 · π) + π))
137105, 94eqtr3d 2858 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
13884oveq1i 7166 . . . . . . . . . . 11 (3 · π) = ((2 + 1) · π)
1391, 9, 22adddiri 10654 . . . . . . . . . . 11 ((2 + 1) · π) = ((2 · π) + (1 · π))
14022mulid2i 10646 . . . . . . . . . . . 12 (1 · π) = π
141140oveq2i 7167 . . . . . . . . . . 11 ((2 · π) + (1 · π)) = ((2 · π) + π)
142138, 139, 1413eqtri 2848 . . . . . . . . . 10 (3 · π) = ((2 · π) + π)
143142a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) = ((2 · π) + π))
144136, 137, 1433brtr4d 5098 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ≤ (3 · π))
14533subid1i 10958 . . . . . . . . . 10 ((2 · π) − 0) = (2 · π)
146145, 122eqnetri 3086 . . . . . . . . 9 ((2 · π) − 0) ≠ 0
147 negsub 10934 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + -𝐴) = (1 − 𝐴))
1489, 41, 147sylancr 589 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴))
149148adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) = (1 − 𝐴))
150 1rp 12394 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ+
151143, 137oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) − (𝑇 / i)) = (((2 · π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))))
15233a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
15322a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈ ℂ)
15464recnd 10669 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℂ)
15567recnd 10669 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ∈ ℂ)
156152, 153, 154, 155addsub4d 11044 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
157151, 156eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) − (𝑇 / i)) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
158157adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π) − (𝑇 / i)) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
15919, 31remulcli 10657 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (3 · π) ∈ ℝ
160159recni 10655 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 · π) ∈ ℂ
161 ax-icn 10596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 i ∈ ℂ
162161a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
163 ine0 11075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 i ≠ 0
164163a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
16597, 162, 164divcld 11416 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
166 subeq0 10912 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((3 · π) ∈ ℂ ∧ (𝑇 / i) ∈ ℂ) → (((3 · π) − (𝑇 / i)) = 0 ↔ (3 · π) = (𝑇 / i)))
167160, 165, 166sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((3 · π) − (𝑇 / i)) = 0 ↔ (3 · π) = (𝑇 / i)))
168167biimpar 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π) − (𝑇 / i)) = 0)
169158, 168eqtr3d 2858 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0)
170 resubcl 10950 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2 · π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ)
17132, 64, 170sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ)
172 subge0 11153 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → (0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π)))
17332, 64, 172sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π)))
174134, 173mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))))
175 resubcl 10950 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (π − (ℑ‘(log‘𝐴))) ∈ ℝ)
17631, 67, 175sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (π − (ℑ‘(log‘𝐴))) ∈ ℝ)
177 subge0 11153 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 ≤ (π − (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π))
17831, 67, 177sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ (π − (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π))
179135, 178mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ (π − (ℑ‘(log‘𝐴))))
180 add20 11152 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ ∧ 0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))) ∧ ((π − (ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (π − (ℑ‘(log‘𝐴))))) → ((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0)))
181171, 174, 176, 179, 180syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0)))
182181biimpa 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0))
183169, 182syldan 593 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0))
184183simprd 498 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (π − (ℑ‘(log‘𝐴))) = 0)
185155adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
186 subeq0 10912 . . . . . . . . . . . . . . . . . . . . . . 23 ((π ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((π − (ℑ‘(log‘𝐴))) = 0 ↔ π = (ℑ‘(log‘𝐴))))
18722, 185, 186sylancr 589 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((π − (ℑ‘(log‘𝐴))) = 0 ↔ π = (ℑ‘(log‘𝐴))))
188184, 187mpbid 234 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → π = (ℑ‘(log‘𝐴)))
189188eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘(log‘𝐴)) = π)
190 lognegb 25173 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
1911903adant3 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
192191adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
193189, 192mpbird 259 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → -𝐴 ∈ ℝ+)
194 rpaddcl 12412 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+ ∧ -𝐴 ∈ ℝ+) → (1 + -𝐴) ∈ ℝ+)
195150, 193, 194sylancr 589 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) ∈ ℝ+)
196149, 195eqeltrrd 2914 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 − 𝐴) ∈ ℝ+)
197196rpreccld 12442 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 / (1 − 𝐴)) ∈ ℝ+)
198197relogcld 25206 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘(1 / (1 − 𝐴))) ∈ ℝ)
199 negsubdi2 10945 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
20041, 9, 199sylancl 588 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(𝐴 − 1) = (1 − 𝐴))
201200oveq1d 7171 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((1 − 𝐴) / -𝐴))
20254, 41, 55div2negd 11431 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((𝐴 − 1) / 𝐴))
203201, 202eqtr3d 2858 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴))
204203adantr 483 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴))
205196, 193rpdivcld 12449 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) ∈ ℝ+)
206204, 205eqeltrrd 2914 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((𝐴 − 1) / 𝐴) ∈ ℝ+)
207206relogcld 25206 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℝ)
208198, 207readdcld 10670 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℝ)
209208reim0d 14584 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = 0)
210209oveq2d 7172 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = ((2 · π) − 0))
211183simpld 497 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0)
212210, 211eqtr3d 2858 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − 0) = 0)
213212ex 415 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) = (𝑇 / i) → ((2 · π) − 0) = 0))
214213necon3d 3037 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) − 0) ≠ 0 → (3 · π) ≠ (𝑇 / i)))
215146, 214mpi 20 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) ≠ (𝑇 / i))
216 ltlen 10741 . . . . . . . . 9 (((𝑇 / i) ∈ ℝ ∧ (3 · π) ∈ ℝ) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π) ∧ (3 · π) ≠ (𝑇 / i))))
217103, 159, 216sylancl 588 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π) ∧ (3 · π) ≠ (𝑇 / i))))
218144, 215, 217mpbir2and 711 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < (3 · π))
219218, 28breqtrrdi 5108 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < ((3 / 2) · (2 · π)))
22020a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 / 2) ∈ ℝ)
221 ltdivmul2 11517 . . . . . . 7 (((𝑇 / i) ∈ ℝ ∧ (3 / 2) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → (((𝑇 / i) / (2 · π)) < (3 / 2) ↔ (𝑇 / i) < ((3 / 2) · (2 · π))))
222103, 220, 110, 114, 221syl112anc 1370 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) < (3 / 2) ↔ (𝑇 / i) < ((3 / 2) · (2 · π))))
223219, 222mpbird 259 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (3 / 2))
22484oveq1i 7166 . . . . . 6 (3 / 2) = ((2 + 1) / 2)
2251, 9, 1, 25divdiri 11397 . . . . . 6 ((2 + 1) / 2) = ((2 / 2) + (1 / 2))
226 2div2e1 11779 . . . . . . 7 (2 / 2) = 1
227226oveq1i 7166 . . . . . 6 ((2 / 2) + (1 / 2)) = (1 + (1 / 2))
228224, 225, 2273eqtri 2848 . . . . 5 (3 / 2) = (1 + (1 / 2))
229223, 228breqtrdi 5107 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (1 + (1 / 2)))
2302a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈ ℝ)
231124, 121, 230ltsubaddd 11236 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) < 1 ↔ ((𝑇 / i) / (2 · π)) < (1 + (1 / 2))))
232229, 231mpbird 259 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2)) < 1)
233101, 232eqbrtrid 5101 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1)
234127, 233jca 514 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  cdif 3933  {csn 4567   class class class wbr 5066  cfv 6355  (class class class)co 7156  cmpo 7158  cc 10535  cr 10536  0cc0 10537  1c1 10538  ici 10539   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  3c3 11694  4c4 11695  cz 11982  +crp 12390  cre 14456  cim 14457  πcpi 15420  logclog 25138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140
This theorem is referenced by:  ang180lem3  25389
  Copyright terms: Public domain W3C validator