ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlvalg Unicode version

Theorem 2idlvalg 14461
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i  |-  I  =  (LIdeal `  R )
2idlval.o  |-  O  =  (oppr
`  R )
2idlval.j  |-  J  =  (LIdeal `  O )
2idlval.t  |-  T  =  (2Ideal `  R )
Assertion
Ref Expression
2idlvalg  |-  ( R  e.  V  ->  T  =  ( I  i^i 
J ) )

Proof of Theorem 2idlvalg
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2  |-  T  =  (2Ideal `  R )
2 df-2idl 14458 . . 3  |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
3 fveq2 5626 . . . . 5  |-  ( r  =  R  ->  (LIdeal `  r )  =  (LIdeal `  R ) )
4 2idlval.i . . . . 5  |-  I  =  (LIdeal `  R )
53, 4eqtr4di 2280 . . . 4  |-  ( r  =  R  ->  (LIdeal `  r )  =  I )
6 fveq2 5626 . . . . . . 7  |-  ( r  =  R  ->  (oppr `  r
)  =  (oppr `  R
) )
7 2idlval.o . . . . . . 7  |-  O  =  (oppr
`  R )
86, 7eqtr4di 2280 . . . . . 6  |-  ( r  =  R  ->  (oppr `  r
)  =  O )
98fveq2d 5630 . . . . 5  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  (LIdeal `  O
) )
10 2idlval.j . . . . 5  |-  J  =  (LIdeal `  O )
119, 10eqtr4di 2280 . . . 4  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  J )
125, 11ineq12d 3406 . . 3  |-  ( r  =  R  ->  (
(LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) )  =  ( I  i^i  J ) )
13 elex 2811 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
14 lidlex 14431 . . . . 5  |-  ( R  e.  V  ->  (LIdeal `  R )  e.  _V )
154, 14eqeltrid 2316 . . . 4  |-  ( R  e.  V  ->  I  e.  _V )
16 inex1g 4219 . . . 4  |-  ( I  e.  _V  ->  (
I  i^i  J )  e.  _V )
1715, 16syl 14 . . 3  |-  ( R  e.  V  ->  (
I  i^i  J )  e.  _V )
182, 12, 13, 17fvmptd3 5727 . 2  |-  ( R  e.  V  ->  (2Ideal `  R )  =  ( I  i^i  J ) )
191, 18eqtrid 2274 1  |-  ( R  e.  V  ->  T  =  ( I  i^i 
J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196   ` cfv 5317  opprcoppr 14025  LIdealclidl 14425  2Idealc2idl 14457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-mulr 13119  df-sca 13121  df-vsca 13122  df-ip 13123  df-lssm 14311  df-sra 14393  df-rgmod 14394  df-lidl 14427  df-2idl 14458
This theorem is referenced by:  2idlelb  14463  2idllidld  14464  2idlridld  14465  2idl0  14470  2idl1  14471  qus1  14484  crng2idl  14489
  Copyright terms: Public domain W3C validator