ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlvalg Unicode version

Theorem 2idlvalg 13999
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i  |-  I  =  (LIdeal `  R )
2idlval.o  |-  O  =  (oppr
`  R )
2idlval.j  |-  J  =  (LIdeal `  O )
2idlval.t  |-  T  =  (2Ideal `  R )
Assertion
Ref Expression
2idlvalg  |-  ( R  e.  V  ->  T  =  ( I  i^i 
J ) )

Proof of Theorem 2idlvalg
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2  |-  T  =  (2Ideal `  R )
2 df-2idl 13996 . . 3  |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
3 fveq2 5554 . . . . 5  |-  ( r  =  R  ->  (LIdeal `  r )  =  (LIdeal `  R ) )
4 2idlval.i . . . . 5  |-  I  =  (LIdeal `  R )
53, 4eqtr4di 2244 . . . 4  |-  ( r  =  R  ->  (LIdeal `  r )  =  I )
6 fveq2 5554 . . . . . . 7  |-  ( r  =  R  ->  (oppr `  r
)  =  (oppr `  R
) )
7 2idlval.o . . . . . . 7  |-  O  =  (oppr
`  R )
86, 7eqtr4di 2244 . . . . . 6  |-  ( r  =  R  ->  (oppr `  r
)  =  O )
98fveq2d 5558 . . . . 5  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  (LIdeal `  O
) )
10 2idlval.j . . . . 5  |-  J  =  (LIdeal `  O )
119, 10eqtr4di 2244 . . . 4  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  J )
125, 11ineq12d 3361 . . 3  |-  ( r  =  R  ->  (
(LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) )  =  ( I  i^i  J ) )
13 elex 2771 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
14 lidlex 13969 . . . . 5  |-  ( R  e.  V  ->  (LIdeal `  R )  e.  _V )
154, 14eqeltrid 2280 . . . 4  |-  ( R  e.  V  ->  I  e.  _V )
16 inex1g 4165 . . . 4  |-  ( I  e.  _V  ->  (
I  i^i  J )  e.  _V )
1715, 16syl 14 . . 3  |-  ( R  e.  V  ->  (
I  i^i  J )  e.  _V )
182, 12, 13, 17fvmptd3 5651 . 2  |-  ( R  e.  V  ->  (2Ideal `  R )  =  ( I  i^i  J ) )
191, 18eqtrid 2238 1  |-  ( R  e.  V  ->  T  =  ( I  i^i 
J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152   ` cfv 5254  opprcoppr 13563  LIdealclidl 13963  2Idealc2idl 13995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-lssm 13849  df-sra 13931  df-rgmod 13932  df-lidl 13965  df-2idl 13996
This theorem is referenced by:  2idlelb  14001  2idllidld  14002  2idlridld  14003  2idl0  14008  2idl1  14009  qus1  14022  crng2idl  14027
  Copyright terms: Public domain W3C validator