ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlvalg Unicode version

Theorem 2idlvalg 14340
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i  |-  I  =  (LIdeal `  R )
2idlval.o  |-  O  =  (oppr
`  R )
2idlval.j  |-  J  =  (LIdeal `  O )
2idlval.t  |-  T  =  (2Ideal `  R )
Assertion
Ref Expression
2idlvalg  |-  ( R  e.  V  ->  T  =  ( I  i^i 
J ) )

Proof of Theorem 2idlvalg
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2  |-  T  =  (2Ideal `  R )
2 df-2idl 14337 . . 3  |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
3 fveq2 5589 . . . . 5  |-  ( r  =  R  ->  (LIdeal `  r )  =  (LIdeal `  R ) )
4 2idlval.i . . . . 5  |-  I  =  (LIdeal `  R )
53, 4eqtr4di 2257 . . . 4  |-  ( r  =  R  ->  (LIdeal `  r )  =  I )
6 fveq2 5589 . . . . . . 7  |-  ( r  =  R  ->  (oppr `  r
)  =  (oppr `  R
) )
7 2idlval.o . . . . . . 7  |-  O  =  (oppr
`  R )
86, 7eqtr4di 2257 . . . . . 6  |-  ( r  =  R  ->  (oppr `  r
)  =  O )
98fveq2d 5593 . . . . 5  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  (LIdeal `  O
) )
10 2idlval.j . . . . 5  |-  J  =  (LIdeal `  O )
119, 10eqtr4di 2257 . . . 4  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  J )
125, 11ineq12d 3379 . . 3  |-  ( r  =  R  ->  (
(LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) )  =  ( I  i^i  J ) )
13 elex 2785 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
14 lidlex 14310 . . . . 5  |-  ( R  e.  V  ->  (LIdeal `  R )  e.  _V )
154, 14eqeltrid 2293 . . . 4  |-  ( R  e.  V  ->  I  e.  _V )
16 inex1g 4188 . . . 4  |-  ( I  e.  _V  ->  (
I  i^i  J )  e.  _V )
1715, 16syl 14 . . 3  |-  ( R  e.  V  ->  (
I  i^i  J )  e.  _V )
182, 12, 13, 17fvmptd3 5686 . 2  |-  ( R  e.  V  ->  (2Ideal `  R )  =  ( I  i^i  J ) )
191, 18eqtrid 2251 1  |-  ( R  e.  V  ->  T  =  ( I  i^i 
J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773    i^i cin 3169   ` cfv 5280  opprcoppr 13904  LIdealclidl 14304  2Idealc2idl 14336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-mulr 12998  df-sca 13000  df-vsca 13001  df-ip 13002  df-lssm 14190  df-sra 14272  df-rgmod 14273  df-lidl 14306  df-2idl 14337
This theorem is referenced by:  2idlelb  14342  2idllidld  14343  2idlridld  14344  2idl0  14349  2idl1  14350  qus1  14363  crng2idl  14368
  Copyright terms: Public domain W3C validator