ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2idlvalg Unicode version

Theorem 2idlvalg 14183
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i  |-  I  =  (LIdeal `  R )
2idlval.o  |-  O  =  (oppr
`  R )
2idlval.j  |-  J  =  (LIdeal `  O )
2idlval.t  |-  T  =  (2Ideal `  R )
Assertion
Ref Expression
2idlvalg  |-  ( R  e.  V  ->  T  =  ( I  i^i 
J ) )

Proof of Theorem 2idlvalg
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2  |-  T  =  (2Ideal `  R )
2 df-2idl 14180 . . 3  |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
3 fveq2 5570 . . . . 5  |-  ( r  =  R  ->  (LIdeal `  r )  =  (LIdeal `  R ) )
4 2idlval.i . . . . 5  |-  I  =  (LIdeal `  R )
53, 4eqtr4di 2255 . . . 4  |-  ( r  =  R  ->  (LIdeal `  r )  =  I )
6 fveq2 5570 . . . . . . 7  |-  ( r  =  R  ->  (oppr `  r
)  =  (oppr `  R
) )
7 2idlval.o . . . . . . 7  |-  O  =  (oppr
`  R )
86, 7eqtr4di 2255 . . . . . 6  |-  ( r  =  R  ->  (oppr `  r
)  =  O )
98fveq2d 5574 . . . . 5  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  (LIdeal `  O
) )
10 2idlval.j . . . . 5  |-  J  =  (LIdeal `  O )
119, 10eqtr4di 2255 . . . 4  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  J )
125, 11ineq12d 3374 . . 3  |-  ( r  =  R  ->  (
(LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) )  =  ( I  i^i  J ) )
13 elex 2782 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
14 lidlex 14153 . . . . 5  |-  ( R  e.  V  ->  (LIdeal `  R )  e.  _V )
154, 14eqeltrid 2291 . . . 4  |-  ( R  e.  V  ->  I  e.  _V )
16 inex1g 4179 . . . 4  |-  ( I  e.  _V  ->  (
I  i^i  J )  e.  _V )
1715, 16syl 14 . . 3  |-  ( R  e.  V  ->  (
I  i^i  J )  e.  _V )
182, 12, 13, 17fvmptd3 5667 . 2  |-  ( R  e.  V  ->  (2Ideal `  R )  =  ( I  i^i  J ) )
191, 18eqtrid 2249 1  |-  ( R  e.  V  ->  T  =  ( I  i^i 
J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771    i^i cin 3164   ` cfv 5268  opprcoppr 13747  LIdealclidl 14147  2Idealc2idl 14179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-iress 12759  df-mulr 12842  df-sca 12844  df-vsca 12845  df-ip 12846  df-lssm 14033  df-sra 14115  df-rgmod 14116  df-lidl 14149  df-2idl 14180
This theorem is referenced by:  2idlelb  14185  2idllidld  14186  2idlridld  14187  2idl0  14192  2idl1  14193  qus1  14206  crng2idl  14211
  Copyright terms: Public domain W3C validator