ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridl Unicode version

Theorem isridl 14208
Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
isridl.u  |-  U  =  (LIdeal `  (oppr
`  R ) )
isridl.b  |-  B  =  ( Base `  R
)
isridl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isridl  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isridl
StepHypRef Expression
1 eqid 2204 . . . 4  |-  (oppr `  R
)  =  (oppr `  R
)
21opprring 13783 . . 3  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
3 isridl.u . . . 4  |-  U  =  (LIdeal `  (oppr
`  R ) )
4 eqid 2204 . . . 4  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
5 eqid 2204 . . . 4  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
63, 4, 5dflidl2 14192 . . 3  |-  ( (oppr `  R )  e.  Ring  -> 
( I  e.  U  <->  ( I  e.  (SubGrp `  (oppr `  R ) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) ) )
72, 6syl 14 . 2  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  (oppr
`  R ) )  /\  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  I  ( x
( .r `  (oppr `  R
) ) y )  e.  I ) ) )
81opprsubgg 13788 . . . . 5  |-  ( R  e.  Ring  ->  (SubGrp `  R )  =  (SubGrp `  (oppr
`  R ) ) )
98eqcomd 2210 . . . 4  |-  ( R  e.  Ring  ->  (SubGrp `  (oppr `  R ) )  =  (SubGrp `  R )
)
109eleq2d 2274 . . 3  |-  ( R  e.  Ring  ->  ( I  e.  (SubGrp `  (oppr `  R
) )  <->  I  e.  (SubGrp `  R ) ) )
11 isridl.b . . . . . 6  |-  B  =  ( Base `  R
)
121, 11opprbasg 13779 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (oppr `  R
) ) )
1312eqcomd 2210 . . . 4  |-  ( R  e.  Ring  ->  ( Base `  (oppr
`  R ) )  =  B )
1412eleq2d 2274 . . . . . 6  |-  ( R  e.  Ring  ->  ( x  e.  B  <->  x  e.  ( Base `  (oppr
`  R ) ) ) )
1514pm5.32i 454 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  <->  ( R  e.  Ring  /\  x  e.  ( Base `  (oppr
`  R ) ) ) )
16 vex 2774 . . . . . . . . 9  |-  x  e. 
_V
17 vex 2774 . . . . . . . . 9  |-  y  e. 
_V
18 isridl.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
1911, 18, 1, 5opprmulg 13775 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  x  e.  _V  /\  y  e. 
_V )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y 
.x.  x ) )
2016, 17, 19mp3an23 1341 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( x ( .r `  (oppr `  R
) ) y )  =  ( y  .x.  x ) )
2120eleq1d 2273 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
2221ad2antrr 488 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  x  e.  B )  /\  y  e.  I
)  ->  ( (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
2322ralbidva 2501 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  ( A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I ) )
2415, 23sylbir 135 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  (oppr `  R
) ) )  -> 
( A. y  e.  I  ( x ( .r `  (oppr `  R
) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I
) )
2513, 24raleqbidva 2719 . . 3  |-  ( R  e.  Ring  ->  ( A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. x  e.  B  A. y  e.  I  (
y  .x.  x )  e.  I ) )
2610, 25anbi12d 473 . 2  |-  ( R  e.  Ring  ->  ( ( I  e.  (SubGrp `  (oppr `  R ) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
)  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
277, 26bitrd 188 1  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   _Vcvv 2771   ` cfv 5270  (class class class)co 5943   Basecbs 12774   .rcmulr 12852  SubGrpcsubg 13445   Ringcrg 13700  opprcoppr 13771  LIdealclidl 14171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-tpos 6330  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-ip 12869  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-sbg 13279  df-subg 13448  df-cmn 13564  df-abl 13565  df-mgp 13625  df-rng 13637  df-ur 13664  df-ring 13702  df-oppr 13772  df-subrg 13923  df-lmod 13993  df-lssm 14057  df-sra 14139  df-rgmod 14140  df-lidl 14173
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator