ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridl Unicode version

Theorem isridl 14341
Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
isridl.u  |-  U  =  (LIdeal `  (oppr
`  R ) )
isridl.b  |-  B  =  ( Base `  R
)
isridl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isridl  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isridl
StepHypRef Expression
1 eqid 2206 . . . 4  |-  (oppr `  R
)  =  (oppr `  R
)
21opprring 13916 . . 3  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
3 isridl.u . . . 4  |-  U  =  (LIdeal `  (oppr
`  R ) )
4 eqid 2206 . . . 4  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
5 eqid 2206 . . . 4  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
63, 4, 5dflidl2 14325 . . 3  |-  ( (oppr `  R )  e.  Ring  -> 
( I  e.  U  <->  ( I  e.  (SubGrp `  (oppr `  R ) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) ) )
72, 6syl 14 . 2  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  (oppr
`  R ) )  /\  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  I  ( x
( .r `  (oppr `  R
) ) y )  e.  I ) ) )
81opprsubgg 13921 . . . . 5  |-  ( R  e.  Ring  ->  (SubGrp `  R )  =  (SubGrp `  (oppr
`  R ) ) )
98eqcomd 2212 . . . 4  |-  ( R  e.  Ring  ->  (SubGrp `  (oppr `  R ) )  =  (SubGrp `  R )
)
109eleq2d 2276 . . 3  |-  ( R  e.  Ring  ->  ( I  e.  (SubGrp `  (oppr `  R
) )  <->  I  e.  (SubGrp `  R ) ) )
11 isridl.b . . . . . 6  |-  B  =  ( Base `  R
)
121, 11opprbasg 13912 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (oppr `  R
) ) )
1312eqcomd 2212 . . . 4  |-  ( R  e.  Ring  ->  ( Base `  (oppr
`  R ) )  =  B )
1412eleq2d 2276 . . . . . 6  |-  ( R  e.  Ring  ->  ( x  e.  B  <->  x  e.  ( Base `  (oppr
`  R ) ) ) )
1514pm5.32i 454 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  <->  ( R  e.  Ring  /\  x  e.  ( Base `  (oppr
`  R ) ) ) )
16 vex 2776 . . . . . . . . 9  |-  x  e. 
_V
17 vex 2776 . . . . . . . . 9  |-  y  e. 
_V
18 isridl.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
1911, 18, 1, 5opprmulg 13908 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  x  e.  _V  /\  y  e. 
_V )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y 
.x.  x ) )
2016, 17, 19mp3an23 1342 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( x ( .r `  (oppr `  R
) ) y )  =  ( y  .x.  x ) )
2120eleq1d 2275 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
2221ad2antrr 488 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  x  e.  B )  /\  y  e.  I
)  ->  ( (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
2322ralbidva 2503 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  ( A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I ) )
2415, 23sylbir 135 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  (oppr `  R
) ) )  -> 
( A. y  e.  I  ( x ( .r `  (oppr `  R
) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I
) )
2513, 24raleqbidva 2721 . . 3  |-  ( R  e.  Ring  ->  ( A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. x  e.  B  A. y  e.  I  (
y  .x.  x )  e.  I ) )
2610, 25anbi12d 473 . 2  |-  ( R  e.  Ring  ->  ( ( I  e.  (SubGrp `  (oppr `  R ) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
)  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
277, 26bitrd 188 1  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773   ` cfv 5280  (class class class)co 5957   Basecbs 12907   .rcmulr 12985  SubGrpcsubg 13578   Ringcrg 13833  opprcoppr 13904  LIdealclidl 14304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-tpos 6344  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-ip 13002  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-sbg 13412  df-subg 13581  df-cmn 13697  df-abl 13698  df-mgp 13758  df-rng 13770  df-ur 13797  df-ring 13835  df-oppr 13905  df-subrg 14056  df-lmod 14126  df-lssm 14190  df-sra 14272  df-rgmod 14273  df-lidl 14306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator