| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isridl | Unicode version | ||
| Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) |
| Ref | Expression |
|---|---|
| isridl.u |
|
| isridl.b |
|
| isridl.t |
|
| Ref | Expression |
|---|---|
| isridl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. . . 4
| |
| 2 | 1 | opprring 13783 |
. . 3
|
| 3 | isridl.u |
. . . 4
| |
| 4 | eqid 2204 |
. . . 4
| |
| 5 | eqid 2204 |
. . . 4
| |
| 6 | 3, 4, 5 | dflidl2 14192 |
. . 3
|
| 7 | 2, 6 | syl 14 |
. 2
|
| 8 | 1 | opprsubgg 13788 |
. . . . 5
|
| 9 | 8 | eqcomd 2210 |
. . . 4
|
| 10 | 9 | eleq2d 2274 |
. . 3
|
| 11 | isridl.b |
. . . . . 6
| |
| 12 | 1, 11 | opprbasg 13779 |
. . . . 5
|
| 13 | 12 | eqcomd 2210 |
. . . 4
|
| 14 | 12 | eleq2d 2274 |
. . . . . 6
|
| 15 | 14 | pm5.32i 454 |
. . . . 5
|
| 16 | vex 2774 |
. . . . . . . . 9
| |
| 17 | vex 2774 |
. . . . . . . . 9
| |
| 18 | isridl.t |
. . . . . . . . . 10
| |
| 19 | 11, 18, 1, 5 | opprmulg 13775 |
. . . . . . . . 9
|
| 20 | 16, 17, 19 | mp3an23 1341 |
. . . . . . . 8
|
| 21 | 20 | eleq1d 2273 |
. . . . . . 7
|
| 22 | 21 | ad2antrr 488 |
. . . . . 6
|
| 23 | 22 | ralbidva 2501 |
. . . . 5
|
| 24 | 15, 23 | sylbir 135 |
. . . 4
|
| 25 | 13, 24 | raleqbidva 2719 |
. . 3
|
| 26 | 10, 25 | anbi12d 473 |
. 2
|
| 27 | 7, 26 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-tpos 6330 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-iress 12782 df-plusg 12864 df-mulr 12865 df-sca 12867 df-vsca 12868 df-ip 12869 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 df-sbg 13279 df-subg 13448 df-cmn 13564 df-abl 13565 df-mgp 13625 df-rng 13637 df-ur 13664 df-ring 13702 df-oppr 13772 df-subrg 13923 df-lmod 13993 df-lssm 14057 df-sra 14139 df-rgmod 14140 df-lidl 14173 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |