ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridl Unicode version

Theorem isridl 13816
Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
isridl.u  |-  U  =  (LIdeal `  (oppr
`  R ) )
isridl.b  |-  B  =  ( Base `  R
)
isridl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isridl  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isridl
StepHypRef Expression
1 eqid 2189 . . . 4  |-  (oppr `  R
)  =  (oppr `  R
)
21opprring 13426 . . 3  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
3 isridl.u . . . 4  |-  U  =  (LIdeal `  (oppr
`  R ) )
4 eqid 2189 . . . 4  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
5 eqid 2189 . . . 4  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
63, 4, 5dflidl2 13801 . . 3  |-  ( (oppr `  R )  e.  Ring  -> 
( I  e.  U  <->  ( I  e.  (SubGrp `  (oppr `  R ) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) ) )
72, 6syl 14 . 2  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  (oppr
`  R ) )  /\  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  I  ( x
( .r `  (oppr `  R
) ) y )  e.  I ) ) )
81opprsubgg 13431 . . . . 5  |-  ( R  e.  Ring  ->  (SubGrp `  R )  =  (SubGrp `  (oppr
`  R ) ) )
98eqcomd 2195 . . . 4  |-  ( R  e.  Ring  ->  (SubGrp `  (oppr `  R ) )  =  (SubGrp `  R )
)
109eleq2d 2259 . . 3  |-  ( R  e.  Ring  ->  ( I  e.  (SubGrp `  (oppr `  R
) )  <->  I  e.  (SubGrp `  R ) ) )
11 isridl.b . . . . . 6  |-  B  =  ( Base `  R
)
121, 11opprbasg 13422 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (oppr `  R
) ) )
1312eqcomd 2195 . . . 4  |-  ( R  e.  Ring  ->  ( Base `  (oppr
`  R ) )  =  B )
1412eleq2d 2259 . . . . . 6  |-  ( R  e.  Ring  ->  ( x  e.  B  <->  x  e.  ( Base `  (oppr
`  R ) ) ) )
1514pm5.32i 454 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  <->  ( R  e.  Ring  /\  x  e.  ( Base `  (oppr
`  R ) ) ) )
16 vex 2755 . . . . . . . . 9  |-  x  e. 
_V
17 vex 2755 . . . . . . . . 9  |-  y  e. 
_V
18 isridl.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
1911, 18, 1, 5opprmulg 13418 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  x  e.  _V  /\  y  e. 
_V )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y 
.x.  x ) )
2016, 17, 19mp3an23 1340 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( x ( .r `  (oppr `  R
) ) y )  =  ( y  .x.  x ) )
2120eleq1d 2258 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
2221ad2antrr 488 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  x  e.  B )  /\  y  e.  I
)  ->  ( (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
2322ralbidva 2486 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  ( A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I ) )
2415, 23sylbir 135 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  (oppr `  R
) ) )  -> 
( A. y  e.  I  ( x ( .r `  (oppr `  R
) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I
) )
2513, 24raleqbidva 2700 . . 3  |-  ( R  e.  Ring  ->  ( A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. x  e.  B  A. y  e.  I  (
y  .x.  x )  e.  I ) )
2610, 25anbi12d 473 . 2  |-  ( R  e.  Ring  ->  ( ( I  e.  (SubGrp `  (oppr `  R ) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
)  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
277, 26bitrd 188 1  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   _Vcvv 2752   ` cfv 5235  (class class class)co 5895   Basecbs 12511   .rcmulr 12587  SubGrpcsubg 13103   Ringcrg 13347  opprcoppr 13414  LIdealclidl 13780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-tpos 6269  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-6 9011  df-7 9012  df-8 9013  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-mulr 12600  df-sca 12602  df-vsca 12603  df-ip 12604  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-sbg 12947  df-subg 13106  df-cmn 13222  df-abl 13223  df-mgp 13272  df-rng 13284  df-ur 13311  df-ring 13349  df-oppr 13415  df-subrg 13563  df-lmod 13602  df-lssm 13666  df-sra 13748  df-rgmod 13749  df-lidl 13782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator