ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridl Unicode version

Theorem isridl 14060
Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
isridl.u  |-  U  =  (LIdeal `  (oppr
`  R ) )
isridl.b  |-  B  =  ( Base `  R
)
isridl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isridl  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isridl
StepHypRef Expression
1 eqid 2196 . . . 4  |-  (oppr `  R
)  =  (oppr `  R
)
21opprring 13635 . . 3  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
3 isridl.u . . . 4  |-  U  =  (LIdeal `  (oppr
`  R ) )
4 eqid 2196 . . . 4  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
5 eqid 2196 . . . 4  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
63, 4, 5dflidl2 14044 . . 3  |-  ( (oppr `  R )  e.  Ring  -> 
( I  e.  U  <->  ( I  e.  (SubGrp `  (oppr `  R ) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) ) )
72, 6syl 14 . 2  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  (oppr
`  R ) )  /\  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  I  ( x
( .r `  (oppr `  R
) ) y )  e.  I ) ) )
81opprsubgg 13640 . . . . 5  |-  ( R  e.  Ring  ->  (SubGrp `  R )  =  (SubGrp `  (oppr
`  R ) ) )
98eqcomd 2202 . . . 4  |-  ( R  e.  Ring  ->  (SubGrp `  (oppr `  R ) )  =  (SubGrp `  R )
)
109eleq2d 2266 . . 3  |-  ( R  e.  Ring  ->  ( I  e.  (SubGrp `  (oppr `  R
) )  <->  I  e.  (SubGrp `  R ) ) )
11 isridl.b . . . . . 6  |-  B  =  ( Base `  R
)
121, 11opprbasg 13631 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (oppr `  R
) ) )
1312eqcomd 2202 . . . 4  |-  ( R  e.  Ring  ->  ( Base `  (oppr
`  R ) )  =  B )
1412eleq2d 2266 . . . . . 6  |-  ( R  e.  Ring  ->  ( x  e.  B  <->  x  e.  ( Base `  (oppr
`  R ) ) ) )
1514pm5.32i 454 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  <->  ( R  e.  Ring  /\  x  e.  ( Base `  (oppr
`  R ) ) ) )
16 vex 2766 . . . . . . . . 9  |-  x  e. 
_V
17 vex 2766 . . . . . . . . 9  |-  y  e. 
_V
18 isridl.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
1911, 18, 1, 5opprmulg 13627 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  x  e.  _V  /\  y  e. 
_V )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y 
.x.  x ) )
2016, 17, 19mp3an23 1340 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( x ( .r `  (oppr `  R
) ) y )  =  ( y  .x.  x ) )
2120eleq1d 2265 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
2221ad2antrr 488 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  x  e.  B )  /\  y  e.  I
)  ->  ( (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
2322ralbidva 2493 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B )  ->  ( A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I ) )
2415, 23sylbir 135 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  (oppr `  R
) ) )  -> 
( A. y  e.  I  ( x ( .r `  (oppr `  R
) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I
) )
2513, 24raleqbidva 2711 . . 3  |-  ( R  e.  Ring  ->  ( A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. x  e.  B  A. y  e.  I  (
y  .x.  x )  e.  I ) )
2610, 25anbi12d 473 . 2  |-  ( R  e.  Ring  ->  ( ( I  e.  (SubGrp `  (oppr `  R ) )  /\  A. x  e.  ( Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
)  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
277, 26bitrd 188 1  |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756  SubGrpcsubg 13297   Ringcrg 13552  opprcoppr 13623  LIdealclidl 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-ur 13516  df-ring 13554  df-oppr 13624  df-subrg 13775  df-lmod 13845  df-lssm 13909  df-sra 13991  df-rgmod 13992  df-lidl 14025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator