ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3c1 Unicode version

Theorem 2lgslem3c1 15743
Description: Lemma 3 for 2lgslem3 15745. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3c1  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  5 )  ->  ( N  mod  2 )  =  1 )

Proof of Theorem 2lgslem3c1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnnn0 9344 . . . 4  |-  ( P  e.  NN  ->  P  e.  NN0 )
2 8nn 9246 . . . . 5  |-  8  e.  NN
3 nnq 9796 . . . . 5  |-  ( 8  e.  NN  ->  8  e.  QQ )
42, 3mp1i 10 . . . 4  |-  ( P  e.  NN  ->  8  e.  QQ )
5 8pos 9181 . . . . 5  |-  0  <  8
65a1i 9 . . . 4  |-  ( P  e.  NN  ->  0  <  8 )
7 modqmuladdnn0 10557 . . . 4  |-  ( ( P  e.  NN0  /\  8  e.  QQ  /\  0  <  8 )  ->  (
( P  mod  8
)  =  5  ->  E. k  e.  NN0  P  =  ( ( k  x.  8 )  +  5 ) ) )
81, 4, 6, 7syl3anc 1252 . . 3  |-  ( P  e.  NN  ->  (
( P  mod  8
)  =  5  ->  E. k  e.  NN0  P  =  ( ( k  x.  8 )  +  5 ) ) )
9 simpr 110 . . . . 5  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
10 nn0cn 9347 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  k  e.  CC )
11 8cn 9164 . . . . . . . . . . . 12  |-  8  e.  CC
1211a1i 9 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  8  e.  CC )
1310, 12mulcomd 8136 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( k  x.  8 )  =  ( 8  x.  k
) )
1413adantl 277 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( k  x.  8 )  =  ( 8  x.  k ) )
1514oveq1d 5989 . . . . . . . 8  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  x.  8 )  +  5 )  =  ( ( 8  x.  k )  +  5 ) )
1615eqeq2d 2221 . . . . . . 7  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( P  =  ( ( k  x.  8 )  +  5 )  <-> 
P  =  ( ( 8  x.  k )  +  5 ) ) )
1716biimpa 296 . . . . . 6  |-  ( ( ( P  e.  NN  /\  k  e.  NN0 )  /\  P  =  (
( k  x.  8 )  +  5 ) )  ->  P  =  ( ( 8  x.  k )  +  5 ) )
18 2lgslem2.n . . . . . . 7  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
19182lgslem3c 15739 . . . . . 6  |-  ( ( k  e.  NN0  /\  P  =  ( (
8  x.  k )  +  5 ) )  ->  N  =  ( ( 2  x.  k
)  +  1 ) )
209, 17, 19syl2an2r 597 . . . . 5  |-  ( ( ( P  e.  NN  /\  k  e.  NN0 )  /\  P  =  (
( k  x.  8 )  +  5 ) )  ->  N  =  ( ( 2  x.  k )  +  1 ) )
21 oveq1 5981 . . . . . 6  |-  ( N  =  ( ( 2  x.  k )  +  1 )  ->  ( N  mod  2 )  =  ( ( ( 2  x.  k )  +  1 )  mod  2
) )
22 nn0z 9434 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  ZZ )
23 eqidd 2210 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
24 2tp1odd 12361 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )  ->  -.  2  ||  ( ( 2  x.  k )  +  1 ) )
2522, 23, 24syl2anc 411 . . . . . . 7  |-  ( k  e.  NN0  ->  -.  2  ||  ( ( 2  x.  k )  +  1 ) )
26 2z 9442 . . . . . . . . . . 11  |-  2  e.  ZZ
2726a1i 9 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  2  e.  ZZ )
2827, 22zmulcld 9543 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( 2  x.  k )  e.  ZZ )
2928peano2zd 9540 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  ZZ )
30 mod2eq1n2dvds 12356 . . . . . . . 8  |-  ( ( ( 2  x.  k
)  +  1 )  e.  ZZ  ->  (
( ( ( 2  x.  k )  +  1 )  mod  2
)  =  1  <->  -.  2  ||  ( ( 2  x.  k )  +  1 ) ) )
3129, 30syl 14 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ( ( 2  x.  k )  +  1 )  mod  2 )  =  1  <->  -.  2  ||  ( ( 2  x.  k )  +  1 ) ) )
3225, 31mpbird 167 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  1 )  mod  2 )  =  1 )
3321, 32sylan9eqr 2264 . . . . 5  |-  ( ( k  e.  NN0  /\  N  =  ( (
2  x.  k )  +  1 ) )  ->  ( N  mod  2 )  =  1 )
349, 20, 33syl2an2r 597 . . . 4  |-  ( ( ( P  e.  NN  /\  k  e.  NN0 )  /\  P  =  (
( k  x.  8 )  +  5 ) )  ->  ( N  mod  2 )  =  1 )
3534rexlimdva2 2631 . . 3  |-  ( P  e.  NN  ->  ( E. k  e.  NN0  P  =  ( ( k  x.  8 )  +  5 )  ->  ( N  mod  2 )  =  1 ) )
368, 35syld 45 . 2  |-  ( P  e.  NN  ->  (
( P  mod  8
)  =  5  -> 
( N  mod  2
)  =  1 ) )
3736imp 124 1  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  5 )  ->  ( N  mod  2 )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   E.wrex 2489   class class class wbr 4062   ` cfv 5294  (class class class)co 5974   CCcc 7965   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972    < clt 8149    - cmin 8285    / cdiv 8787   NNcn 9078   2c2 9129   4c4 9131   5c5 9132   8c8 9135   NN0cn0 9337   ZZcz 9414   QQcq 9782   |_cfl 10455    mod cmo 10511    || cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-ico 10058  df-fz 10173  df-fl 10457  df-mod 10512  df-dvds 12265
This theorem is referenced by:  2lgslem3  15745
  Copyright terms: Public domain W3C validator