ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plymullem1 Unicode version

Theorem plymullem1 14894
Description: Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypotheses
Ref Expression
plyaddlem.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyaddlem.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyaddlem.m  |-  ( ph  ->  M  e.  NN0 )
plyaddlem.n  |-  ( ph  ->  N  e.  NN0 )
plyaddlem.a  |-  ( ph  ->  A : NN0 --> CC )
plyaddlem.b  |-  ( ph  ->  B : NN0 --> CC )
plyaddlem.a2  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
plyaddlem.b2  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyaddlem.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plyaddlem.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
Assertion
Ref Expression
plymullem1  |-  ( ph  ->  ( F  oF  x.  G )  =  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) ) )
Distinct variable groups:    A, n    k, n, B    k, M, n   
k, N, n    z,
k, ph, n
Allowed substitution hints:    A( z, k)    B( z)    S( z, k, n)    F( z, k, n)    G( z, k, n)    M( z)    N( z)

Proof of Theorem plymullem1
Dummy variables  m  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7996 . . . 4  |-  CC  e.  _V
21a1i 9 . . 3  |-  ( ph  ->  CC  e.  _V )
3 0zd 9329 . . . . . 6  |-  ( ph  ->  0  e.  ZZ )
4 plyaddlem.m . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
54nn0zd 9437 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
63, 5fzfigd 10502 . . . . 5  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
76adantr 276 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  e. 
Fin )
8 plyaddlem.a . . . . . . 7  |-  ( ph  ->  A : NN0 --> CC )
98ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  A : NN0 --> CC )
10 elfznn0 10180 . . . . . . 7  |-  ( k  e.  ( 0 ... M )  ->  k  e.  NN0 )
1110adantl 277 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  k  e.  NN0 )
129, 11ffvelcdmd 5694 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  ( A `  k )  e.  CC )
13 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  z  e.  CC )
1413, 11expcld 10744 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
z ^ k )  e.  CC )
1512, 14mulcld 8040 . . . 4  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
167, 15fsumcl 11543 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) )  e.  CC )
17 plyaddlem.n . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
1817nn0zd 9437 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
193, 18fzfigd 10502 . . . . 5  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
2019adantr 276 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
21 plyaddlem.b . . . . . . 7  |-  ( ph  ->  B : NN0 --> CC )
2221ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  B : NN0 --> CC )
23 elfznn0 10180 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2423adantl 277 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2522, 24ffvelcdmd 5694 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( B `  k )  e.  CC )
26 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  z  e.  CC )
2726, 24expcld 10744 . . . . 5  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
z ^ k )  e.  CC )
2825, 27mulcld 8040 . . . 4  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  e.  CC )
2920, 28fsumcl 11543 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) )  e.  CC )
30 plyaddlem.f . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
31 plyaddlem.g . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
322, 16, 29, 30, 31offval2 6146 . 2  |-  ( ph  ->  ( F  oF  x.  G )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  x.  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) ) )
33 fveq2 5554 . . . . . . . 8  |-  ( m  =  n  ->  ( B `  m )  =  ( B `  n ) )
34 oveq2 5926 . . . . . . . 8  |-  ( m  =  n  ->  (
z ^ m )  =  ( z ^
n ) )
3533, 34oveq12d 5936 . . . . . . 7  |-  ( m  =  n  ->  (
( B `  m
)  x.  ( z ^ m ) )  =  ( ( B `
 n )  x.  ( z ^ n
) ) )
3635oveq2d 5934 . . . . . 6  |-  ( m  =  n  ->  (
( ( A `  k )  x.  (
z ^ k ) )  x.  ( ( B `  m )  x.  ( z ^
m ) ) )  =  ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) ) )
37 fveq2 5554 . . . . . . . 8  |-  ( m  =  ( n  -  k )  ->  ( B `  m )  =  ( B `  ( n  -  k
) ) )
38 oveq2 5926 . . . . . . . 8  |-  ( m  =  ( n  -  k )  ->  (
z ^ m )  =  ( z ^
( n  -  k
) ) )
3937, 38oveq12d 5936 . . . . . . 7  |-  ( m  =  ( n  -  k )  ->  (
( B `  m
)  x.  ( z ^ m ) )  =  ( ( B `
 ( n  -  k ) )  x.  ( z ^ (
n  -  k ) ) ) )
4039oveq2d 5934 . . . . . 6  |-  ( m  =  ( n  -  k )  ->  (
( ( A `  k )  x.  (
z ^ k ) )  x.  ( ( B `  m )  x.  ( z ^
m ) ) )  =  ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  ( n  -  k
) )  x.  (
z ^ ( n  -  k ) ) ) ) )
41 elfznn0 10180 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( M  +  N
) )  ->  k  e.  NN0 )
428adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
4342ffvelcdmda 5693 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
44 expcl 10628 . . . . . . . . . . 11  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
4544adantll 476 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
z ^ k )  e.  CC )
4643, 45mulcld 8040 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  NN0 )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
4741, 46sylan2 286 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( M  +  N )
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
48 elfznn0 10180 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( ( M  +  N )  -  k
) )  ->  n  e.  NN0 )
4921adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  B : NN0
--> CC )
5049ffvelcdmda 5693 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  NN0 )  ->  ( B `  n )  e.  CC )
51 expcl 10628 . . . . . . . . . . 11  |-  ( ( z  e.  CC  /\  n  e.  NN0 )  -> 
( z ^ n
)  e.  CC )
5251adantll 476 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  NN0 )  ->  (
z ^ n )  e.  CC )
5350, 52mulcld 8040 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  NN0 )  ->  (
( B `  n
)  x.  ( z ^ n ) )  e.  CC )
5448, 53sylan2 286 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
( B `  n
)  x.  ( z ^ n ) )  e.  CC )
5547, 54anim12dan 600 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  (
k  e.  ( 0 ... ( M  +  N ) )  /\  n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  e.  CC  /\  (
( B `  n
)  x.  ( z ^ n ) )  e.  CC ) )
56 mulcl 7999 . . . . . . 7  |-  ( ( ( ( A `  k )  x.  (
z ^ k ) )  e.  CC  /\  ( ( B `  n )  x.  (
z ^ n ) )  e.  CC )  ->  ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) )  e.  CC )
5755, 56syl 14 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  (
k  e.  ( 0 ... ( M  +  N ) )  /\  n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) )  e.  CC )
585, 18zaddcld 9443 . . . . . . 7  |-  ( ph  ->  ( M  +  N
)  e.  ZZ )
5958adantr 276 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( M  +  N )  e.  ZZ )
6036, 40, 57, 59fisum0diag2 11590 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... ( M  +  N )
) sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) )  =  sum_ n  e.  ( 0 ... ( M  +  N )
) sum_ k  e.  ( 0 ... n ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  (
n  -  k ) )  x.  ( z ^ ( n  -  k ) ) ) ) )
614nn0cnd 9295 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  CC )
6261ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  M  e.  CC )
6317nn0cnd 9295 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
6463ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  N  e.  CC )
6511nn0cnd 9295 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  k  e.  CC )
6662, 64, 65addsubd 8351 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( M  +  N
)  -  k )  =  ( ( M  -  k )  +  N ) )
67 fznn0sub 10123 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... M )  ->  ( M  -  k )  e.  NN0 )
6867adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  ( M  -  k )  e.  NN0 )
69 nn0uz 9627 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
7068, 69eleqtrdi 2286 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  ( M  -  k )  e.  ( ZZ>= `  0 )
)
7118ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  N  e.  ZZ )
72 eluzadd 9621 . . . . . . . . . . . 12  |-  ( ( ( M  -  k
)  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  (
( M  -  k
)  +  N )  e.  ( ZZ>= `  (
0  +  N ) ) )
7370, 71, 72syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( M  -  k
)  +  N )  e.  ( ZZ>= `  (
0  +  N ) ) )
7466, 73eqeltrd 2270 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( M  +  N
)  -  k )  e.  ( ZZ>= `  (
0  +  N ) ) )
7564addlidd 8169 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
0  +  N )  =  N )
7675fveq2d 5558 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  ( ZZ>=
`  ( 0  +  N ) )  =  ( ZZ>= `  N )
)
7774, 76eleqtrd 2272 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( M  +  N
)  -  k )  e.  ( ZZ>= `  N
) )
78 fzss2 10130 . . . . . . . . 9  |-  ( ( ( M  +  N
)  -  k )  e.  ( ZZ>= `  N
)  ->  ( 0 ... N )  C_  ( 0 ... (
( M  +  N
)  -  k ) ) )
7977, 78syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
0 ... N )  C_  ( 0 ... (
( M  +  N
)  -  k ) ) )
8010, 46sylan2 286 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
8180adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... N ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  e.  CC )
82 elfznn0 10180 . . . . . . . . . . 11  |-  ( n  e.  ( 0 ... N )  ->  n  e.  NN0 )
8382, 53sylan2 286 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... N
) )  ->  (
( B `  n
)  x.  ( z ^ n ) )  e.  CC )
8483adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... N ) )  ->  ( ( B `  n )  x.  ( z ^ n
) )  e.  CC )
8581, 84mulcld 8040 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... N ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) )  e.  CC )
86 eldifn 3282 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ( 0 ... ( ( M  +  N )  -  k ) )  \ 
( 0 ... N
) )  ->  -.  n  e.  ( 0 ... N ) )
8786adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  -.  n  e.  ( 0 ... N
) )
88 eldifi 3281 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( ( 0 ... ( ( M  +  N )  -  k ) )  \ 
( 0 ... N
) )  ->  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )
8988, 48syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( ( 0 ... ( ( M  +  N )  -  k ) )  \ 
( 0 ... N
) )  ->  n  e.  NN0 )
9089adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  n  e.  NN0 )
91 peano2nn0 9280 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
9217, 91syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
9392, 69eleqtrdi 2286 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= ` 
0 ) )
94 uzsplit 10158 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
9593, 94syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( N  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
9669, 95eqtrid 2238 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
97 ax-1cn 7965 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  CC
98 pncan 8225 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
9963, 97, 98sylancl 413 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
10099oveq2d 5934 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
101100uneq1d 3312 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 0 ... ( ( N  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( N  + 
1 ) ) )  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
10296, 101eqtrd 2226 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
103102ad3antrrr 492 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  NN0  =  ( ( 0 ... N
)  u.  ( ZZ>= `  ( N  +  1
) ) ) )
10490, 103eleqtrd 2272 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  n  e.  ( ( 0 ... N )  u.  ( ZZ>=
`  ( N  + 
1 ) ) ) )
105 elun 3300 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ( 0 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( n  e.  ( 0 ... N
)  \/  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
106104, 105sylib 122 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( n  e.  ( 0 ... N
)  \/  n  e.  ( ZZ>= `  ( N  +  1 ) ) ) )
107106ord 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( -.  n  e.  ( 0 ... N )  ->  n  e.  ( ZZ>= `  ( N  +  1
) ) ) )
10887, 107mpd 13 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  n  e.  ( ZZ>= `  ( N  +  1 ) ) )
10921ffund 5407 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Fun  B )
110 ssun2 3323 . . . . . . . . . . . . . . . . . . 19  |-  ( ZZ>= `  ( N  +  1
) )  C_  (
( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) )
111110, 96sseqtrrid 3230 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  NN0 )
11221fdmd 5410 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  B  =  NN0 )
113111, 112sseqtrrd 3218 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  dom  B )
114 funfvima2 5791 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  B  /\  ( ZZ>=
`  ( N  + 
1 ) )  C_  dom  B )  ->  (
n  e.  ( ZZ>= `  ( N  +  1
) )  ->  ( B `  n )  e.  ( B " ( ZZ>=
`  ( N  + 
1 ) ) ) ) )
115109, 113, 114syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( n  e.  (
ZZ>= `  ( N  + 
1 ) )  -> 
( B `  n
)  e.  ( B
" ( ZZ>= `  ( N  +  1 ) ) ) ) )
116115ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( n  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( B `  n )  e.  ( B " ( ZZ>= `  ( N  +  1
) ) ) ) )
117108, 116mpd 13 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( B `  n )  e.  ( B " ( ZZ>= `  ( N  +  1
) ) ) )
118 plyaddlem.b2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
119118ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( B " ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )
120117, 119eleqtrd 2272 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( B `  n )  e.  {
0 } )
121 elsni 3636 . . . . . . . . . . . . 13  |-  ( ( B `  n )  e.  { 0 }  ->  ( B `  n )  =  0 )
122120, 121syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( B `  n )  =  0 )
123122oveq1d 5933 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( ( B `  n )  x.  ( z ^ n
) )  =  ( 0  x.  ( z ^ n ) ) )
12413, 89, 51syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( z ^ n )  e.  CC )
125124mul02d 8411 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( 0  x.  ( z ^
n ) )  =  0 )
126123, 125eqtrd 2226 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( ( B `  n )  x.  ( z ^ n
) )  =  0 )
127126oveq2d 5934 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) )  =  ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  0 ) )
12880adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  e.  CC )
129128mul01d 8412 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  0 )  =  0 )
130127, 129eqtrd 2226 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( ( 0 ... (
( M  +  N
)  -  k ) )  \  ( 0 ... N ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) )  =  0 )
131 elfzelz 10091 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... ( ( M  +  N )  -  k
) )  ->  j  e.  ZZ )
132131adantl 277 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  j  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  ->  j  e.  ZZ )
133 0zd 9329 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  j  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  ->  0  e.  ZZ )
13471adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  j  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  ->  N  e.  ZZ )
135 fzdcel 10106 . . . . . . . . . 10  |-  ( ( j  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  j  e.  (
0 ... N ) )
136132, 133, 134, 135syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  j  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  -> DECID  j  e.  (
0 ... N ) )
137136ralrimiva 2567 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  A. j  e.  ( 0 ... (
( M  +  N
)  -  k ) )DECID  j  e.  ( 0 ... N ) )
138 0zd 9329 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  0  e.  ZZ )
13959adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  ( M  +  N )  e.  ZZ )
14011nn0zd 9437 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  k  e.  ZZ )
141139, 140zsubcld 9444 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
( M  +  N
)  -  k )  e.  ZZ )
142138, 141fzfigd 10502 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  (
0 ... ( ( M  +  N )  -  k ) )  e. 
Fin )
14379, 85, 130, 137, 142fisumss 11535 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  sum_ n  e.  ( 0 ... N
) ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) )  =  sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k
) ) ( ( ( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) ) )
144143sumeq2dv 11511 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) sum_ n  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) )  =  sum_ k  e.  ( 0 ... M
) sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) ) )
145 0zd 9329 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  0  e.  ZZ )
1465adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  M  e.  ZZ )
147145, 146fzfigd 10502 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  e. 
Fin )
14818adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  N  e.  ZZ )
149145, 148fzfigd 10502 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
150147, 149, 80, 83fsum2mul 11596 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) sum_ n  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) )  =  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ n  e.  ( 0 ... N ) ( ( B `  n )  x.  (
z ^ n ) ) ) )
15161, 63addcomd 8170 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  N
)  =  ( N  +  M ) )
15217, 69eleqtrdi 2286 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
153 eluzadd 9621 . . . . . . . . . . . 12  |-  ( ( N  e.  ( ZZ>= ` 
0 )  /\  M  e.  ZZ )  ->  ( N  +  M )  e.  ( ZZ>= `  ( 0  +  M ) ) )
154152, 5, 153syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( N  +  M
)  e.  ( ZZ>= `  ( 0  +  M
) ) )
15561addlidd 8169 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  +  M
)  =  M )
156155fveq2d 5558 . . . . . . . . . . 11  |-  ( ph  ->  ( ZZ>= `  ( 0  +  M ) )  =  ( ZZ>= `  M )
)
157154, 156eleqtrd 2272 . . . . . . . . . 10  |-  ( ph  ->  ( N  +  M
)  e.  ( ZZ>= `  M ) )
158151, 157eqeltrd 2270 . . . . . . . . 9  |-  ( ph  ->  ( M  +  N
)  e.  ( ZZ>= `  M ) )
159 fzss2 10130 . . . . . . . . 9  |-  ( ( M  +  N )  e.  ( ZZ>= `  M
)  ->  ( 0 ... M )  C_  ( 0 ... ( M  +  N )
) )
160158, 159syl 14 . . . . . . . 8  |-  ( ph  ->  ( 0 ... M
)  C_  ( 0 ... ( M  +  N ) ) )
161160adantr 276 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... M )  C_  ( 0 ... ( M  +  N )
) )
16280adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  e.  CC )
16354adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  ->  ( ( B `  n )  x.  ( z ^ n
) )  e.  CC )
164162, 163mulcld 8040 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
0 ... M ) )  /\  n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) )  e.  CC )
165142, 164fsumcl 11543 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... M
) )  ->  sum_ n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) )  e.  CC )
166 eldifn 3282 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \ 
( 0 ... M
) )  ->  -.  k  e.  ( 0 ... M ) )
167166adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  -.  k  e.  ( 0 ... M
) )
168 eldifi 3281 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \ 
( 0 ... M
) )  ->  k  e.  ( 0 ... ( M  +  N )
) )
169168, 41syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( ( 0 ... ( M  +  N ) )  \ 
( 0 ... M
) )  ->  k  e.  NN0 )
170169adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  k  e.  NN0 )
171 peano2nn0 9280 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
1724, 171syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( M  +  1 )  e.  NN0 )
173172, 69eleqtrdi 2286 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= ` 
0 ) )
174 uzsplit 10158 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) ) )
175173, 174syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ZZ>= `  0 )  =  ( ( 0 ... ( ( M  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
17669, 175eqtrid 2238 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  NN0  =  ( ( 0 ... ( ( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
177 pncan 8225 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
17861, 97, 177sylancl 413 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
179178oveq2d 5934 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( 0 ... (
( M  +  1 )  -  1 ) )  =  ( 0 ... M ) )
180179uneq1d 3312 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 0 ... ( ( M  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( M  + 
1 ) ) )  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
181176, 180eqtrd 2226 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  NN0  =  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) ) )
182181ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  NN0  =  ( ( 0 ... M
)  u.  ( ZZ>= `  ( M  +  1
) ) ) )
183170, 182eleqtrd 2272 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  k  e.  ( ( 0 ... M )  u.  ( ZZ>=
`  ( M  + 
1 ) ) ) )
184 elun 3300 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( ( 0 ... M )  u.  ( ZZ>= `  ( M  +  1 ) ) )  <->  ( k  e.  ( 0 ... M
)  \/  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
185183, 184sylib 122 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( k  e.  ( 0 ... M
)  \/  k  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
186185ord 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( -.  k  e.  ( 0 ... M )  -> 
k  e.  ( ZZ>= `  ( M  +  1
) ) ) )
187167, 186mpd 13 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
1888ffund 5407 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  Fun  A )
189 ssun2 3323 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ZZ>= `  ( M  +  1
) )  C_  (
( 0 ... (
( M  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( M  +  1
) ) )
190189, 176sseqtrrid 3230 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  NN0 )
1918fdmd 5410 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  A  =  NN0 )
192190, 191sseqtrrd 3218 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ZZ>= `  ( M  +  1 ) ) 
C_  dom  A )
193 funfvima2 5791 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Fun  A  /\  ( ZZ>=
`  ( M  + 
1 ) )  C_  dom  A )  ->  (
k  e.  ( ZZ>= `  ( M  +  1
) )  ->  ( A `  k )  e.  ( A " ( ZZ>=
`  ( M  + 
1 ) ) ) ) )
194188, 192, 193syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
( A `  k
)  e.  ( A
" ( ZZ>= `  ( M  +  1 ) ) ) ) )
195194ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( k  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( A `  k )  e.  ( A " ( ZZ>= `  ( M  +  1
) ) ) ) )
196187, 195mpd 13 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( A `  k )  e.  ( A " ( ZZ>= `  ( M  +  1
) ) ) )
197 plyaddlem.a2 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
198197ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( A " ( ZZ>= `  ( M  +  1 ) ) )  =  { 0 } )
199196, 198eleqtrd 2272 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( A `  k )  e.  {
0 } )
200 elsni 3636 . . . . . . . . . . . . . . 15  |-  ( ( A `  k )  e.  { 0 }  ->  ( A `  k )  =  0 )
201199, 200syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( A `  k )  =  0 )
202201oveq1d 5933 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  =  ( 0  x.  ( z ^ k ) ) )
203169, 45sylan2 286 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( z ^ k )  e.  CC )
204203mul02d 8411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( 0  x.  ( z ^
k ) )  =  0 )
205202, 204eqtrd 2226 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( ( A `  k )  x.  ( z ^ k
) )  =  0 )
206205adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
( 0 ... ( M  +  N )
)  \  ( 0 ... M ) ) )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  0 )
207206oveq1d 5933 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
( 0 ... ( M  +  N )
)  \  ( 0 ... M ) ) )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
( ( A `  k )  x.  (
z ^ k ) )  x.  ( ( B `  n )  x.  ( z ^
n ) ) )  =  ( 0  x.  ( ( B `  n )  x.  (
z ^ n ) ) ) )
20854adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
( 0 ... ( M  +  N )
)  \  ( 0 ... M ) ) )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
( B `  n
)  x.  ( z ^ n ) )  e.  CC )
209208mul02d 8411 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
( 0 ... ( M  +  N )
)  \  ( 0 ... M ) ) )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
0  x.  ( ( B `  n )  x.  ( z ^
n ) ) )  =  0 )
210207, 209eqtrd 2226 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  k  e.  (
( 0 ... ( M  +  N )
)  \  ( 0 ... M ) ) )  /\  n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) )  ->  (
( ( A `  k )  x.  (
z ^ k ) )  x.  ( ( B `  n )  x.  ( z ^
n ) ) )  =  0 )
211210sumeq2dv 11511 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  sum_ n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) )  =  sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k
) ) 0 )
212 0zd 9329 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  0  e.  ZZ )
21359adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( M  +  N )  e.  ZZ )
214170nn0zd 9437 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  k  e.  ZZ )
215213, 214zsubcld 9444 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( ( M  +  N )  -  k )  e.  ZZ )
216212, 215fzfigd 10502 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( 0 ... ( ( M  +  N )  -  k ) )  e. 
Fin )
217216olcd 735 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  ( (
0  e.  ZZ  /\  ( 0 ... (
( M  +  N
)  -  k ) )  C_  ( ZZ>= ` 
0 )  /\  A. j  e.  ( ZZ>= ` 
0 )DECID  j  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  \/  ( 0 ... ( ( M  +  N )  -  k
) )  e.  Fin ) )
218 isumz 11532 . . . . . . . . 9  |-  ( ( ( 0  e.  ZZ  /\  ( 0 ... (
( M  +  N
)  -  k ) )  C_  ( ZZ>= ` 
0 )  /\  A. j  e.  ( ZZ>= ` 
0 )DECID  j  e.  ( 0 ... ( ( M  +  N )  -  k ) ) )  \/  ( 0 ... ( ( M  +  N )  -  k
) )  e.  Fin )  ->  sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) 0  =  0 )
219217, 218syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  sum_ n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) 0  =  0 )
220211, 219eqtrd 2226 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... ( M  +  N
) )  \  (
0 ... M ) ) )  ->  sum_ n  e.  ( 0 ... (
( M  +  N
)  -  k ) ) ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  n )  x.  (
z ^ n ) ) )  =  0 )
221 elfzelz 10091 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... ( M  +  N
) )  ->  j  e.  ZZ )
222221adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( M  +  N )
) )  ->  j  e.  ZZ )
223 0zd 9329 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( M  +  N )
) )  ->  0  e.  ZZ )
224146adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( M  +  N )
) )  ->  M  e.  ZZ )
225 fzdcel 10106 . . . . . . . . 9  |-  ( ( j  e.  ZZ  /\  0  e.  ZZ  /\  M  e.  ZZ )  -> DECID  j  e.  (
0 ... M ) )
226222, 223, 224, 225syl3anc 1249 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( M  +  N )
) )  -> DECID  j  e.  (
0 ... M ) )
227226ralrimiva 2567 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  A. j  e.  ( 0 ... ( M  +  N )
)DECID  j  e.  ( 0 ... M ) )
228146, 148zaddcld 9443 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  ( M  +  N )  e.  ZZ )
229145, 228fzfigd 10502 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... ( M  +  N ) )  e. 
Fin )
230161, 165, 220, 227, 229fisumss 11535 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... M
) sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) )  =  sum_ k  e.  ( 0 ... ( M  +  N )
) sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k ) ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  n
)  x.  ( z ^ n ) ) ) )
231144, 150, 2303eqtr3d 2234 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ n  e.  ( 0 ... N ) ( ( B `  n )  x.  (
z ^ n ) ) )  =  sum_ k  e.  ( 0 ... ( M  +  N ) ) sum_ n  e.  ( 0 ... ( ( M  +  N )  -  k
) ) ( ( ( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 n )  x.  ( z ^ n
) ) ) )
232 0zd 9329 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  0  e.  ZZ )
233 elfzelz 10091 . . . . . . . . . 10  |-  ( n  e.  ( 0 ... ( M  +  N
) )  ->  n  e.  ZZ )
234233adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  n  e.  ZZ )
235232, 234fzfigd 10502 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  (
0 ... n )  e. 
Fin )
236 elfznn0 10180 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( M  +  N
) )  ->  n  e.  NN0 )
237236, 52sylan2 286 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  (
z ^ n )  e.  CC )
238 simpll 527 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  ph )
239 elfznn0 10180 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
2408ffvelcdmda 5693 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
241238, 239, 240syl2an 289 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( A `  k )  e.  CC )
242 fznn0sub 10123 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... n )  ->  (
n  -  k )  e.  NN0 )
24321ffvelcdmda 5693 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  -  k )  e. 
NN0 )  ->  ( B `  ( n  -  k ) )  e.  CC )
244238, 242, 243syl2an 289 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( B `  ( n  -  k
) )  e.  CC )
245241, 244mulcld 8040 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( A `  k )  x.  ( B `  (
n  -  k ) ) )  e.  CC )
246235, 237, 245fsummulc1 11592 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  ( sum_ k  e.  ( 0 ... n ) ( ( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  x.  ( z ^
n ) )  = 
sum_ k  e.  ( 0 ... n ) ( ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) ) )
247 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  z  e.  CC )
248247, 239, 44syl2an 289 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( z ^ k )  e.  CC )
249 expcl 10628 . . . . . . . . . . 11  |-  ( ( z  e.  CC  /\  ( n  -  k
)  e.  NN0 )  ->  ( z ^ (
n  -  k ) )  e.  CC )
250247, 242, 249syl2an 289 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( z ^ ( n  -  k ) )  e.  CC )
251241, 248, 244, 250mul4d 8174 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 ( n  -  k ) )  x.  ( z ^ (
n  -  k ) ) ) )  =  ( ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
( z ^ k
)  x.  ( z ^ ( n  -  k ) ) ) ) )
252247adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  z  e.  CC )
253242adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( n  -  k )  e. 
NN0 )
254239adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  k  e.  NN0 )
255252, 253, 254expaddd 10746 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( z ^ ( k  +  ( n  -  k
) ) )  =  ( ( z ^
k )  x.  (
z ^ ( n  -  k ) ) ) )
256254nn0cnd 9295 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  k  e.  CC )
257236ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  n  e.  NN0 )
258257nn0cnd 9295 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  n  e.  CC )
259256, 258pncan3d 8333 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( k  +  ( n  -  k ) )  =  n )
260259oveq2d 5934 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( z ^ ( k  +  ( n  -  k
) ) )  =  ( z ^ n
) )
261255, 260eqtr3d 2228 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( (
z ^ k )  x.  ( z ^
( n  -  k
) ) )  =  ( z ^ n
) )
262261oveq2d 5934 . . . . . . . . 9  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( (
( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  x.  ( ( z ^ k )  x.  ( z ^ (
n  -  k ) ) ) )  =  ( ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) ) )
263251, 262eqtrd 2226 . . . . . . . 8  |-  ( ( ( ( ph  /\  z  e.  CC )  /\  n  e.  (
0 ... ( M  +  N ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( (
( A `  k
)  x.  ( z ^ k ) )  x.  ( ( B `
 ( n  -  k ) )  x.  ( z ^ (
n  -  k ) ) ) )  =  ( ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) ) )
264263sumeq2dv 11511 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  sum_ k  e.  ( 0 ... n
) ( ( ( A `  k )  x.  ( z ^
k ) )  x.  ( ( B `  ( n  -  k
) )  x.  (
z ^ ( n  -  k ) ) ) )  =  sum_ k  e.  ( 0 ... n ) ( ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) )
265246, 264eqtr4d 2229 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  ( sum_ k  e.  ( 0 ... n ) ( ( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  x.  ( z ^
n ) )  = 
sum_ k  e.  ( 0 ... n ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  (
n  -  k ) )  x.  ( z ^ ( n  -  k ) ) ) ) )
266265sumeq2dv 11511 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ n  e.  ( 0 ... ( M  +  N )
) ( sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) )  =  sum_ n  e.  ( 0 ... ( M  +  N )
) sum_ k  e.  ( 0 ... n ) ( ( ( A `
 k )  x.  ( z ^ k
) )  x.  (
( B `  (
n  -  k ) )  x.  ( z ^ ( n  -  k ) ) ) ) )
26760, 231, 2663eqtr4rd 2237 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ n  e.  ( 0 ... ( M  +  N )
) ( sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) )  =  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ n  e.  ( 0 ... N ) ( ( B `  n )  x.  (
z ^ n ) ) ) )
268 fveq2 5554 . . . . . . 7  |-  ( n  =  k  ->  ( B `  n )  =  ( B `  k ) )
269 oveq2 5926 . . . . . . 7  |-  ( n  =  k  ->  (
z ^ n )  =  ( z ^
k ) )
270268, 269oveq12d 5936 . . . . . 6  |-  ( n  =  k  ->  (
( B `  n
)  x.  ( z ^ n ) )  =  ( ( B `
 k )  x.  ( z ^ k
) ) )
271270cbvsumv 11504 . . . . 5  |-  sum_ n  e.  ( 0 ... N
) ( ( B `
 n )  x.  ( z ^ n
) )  =  sum_ k  e.  ( 0 ... N ) ( ( B `  k
)  x.  ( z ^ k ) )
272271oveq2i 5929 . . . 4  |-  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ n  e.  ( 0 ... N ) ( ( B `  n )  x.  (
z ^ n ) ) )  =  (
sum_ k  e.  ( 0 ... M ) ( ( A `  k )  x.  (
z ^ k ) )  x.  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) )
273267, 272eqtrdi 2242 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ n  e.  ( 0 ... ( M  +  N )
) ( sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  x.  (
z ^ n ) )  =  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ k  e.  ( 0 ... N ) ( ( B `  k )  x.  (
z ^ k ) ) ) )
274273mpteq2dva 4119 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... M ) ( ( A `  k
)  x.  ( z ^ k ) )  x.  sum_ k  e.  ( 0 ... N ) ( ( B `  k )  x.  (
z ^ k ) ) ) ) )
27532, 274eqtr4d 2229 1  |-  ( ph  ->  ( F  oF  x.  G )  =  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    \ cdif 3150    u. cun 3151    C_ wss 3153   {csn 3618    |-> cmpt 4090   dom cdm 4659   "cima 4662   Fun wfun 5248   -->wf 5250   ` cfv 5254  (class class class)co 5918    oFcof 6128   Fincfn 6794   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    - cmin 8190   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074   ^cexp 10609   sum_csu 11496  Polycply 14874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  plymullem  14896
  Copyright terms: Public domain W3C validator