ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moddvds Unicode version

Theorem moddvds 11538
Description: Two ways to say  A  ==  B (mod  N), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
moddvds  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  N
)  =  ( B  mod  N )  <->  N  ||  ( A  -  B )
) )

Proof of Theorem moddvds
StepHypRef Expression
1 nnq 9452 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
21adantr 274 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  N  e.  QQ )
3 nngt0 8769 . . . . . 6  |-  ( N  e.  NN  ->  0  <  N )
43adantr 274 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  0  <  N )
5 q0mod 10159 . . . . 5  |-  ( ( N  e.  QQ  /\  0  <  N )  -> 
( 0  mod  N
)  =  0 )
62, 4, 5syl2anc 409 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( 0  mod  N )  =  0 )
76eqeq2d 2152 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  <->  ( ( A  -  B )  mod  N )  =  0 ) )
8 zq 9445 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  A  e.  QQ )
98ad2antrl 482 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  QQ )
109adantr 274 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  A  e.  QQ )
11 zq 9445 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  B  e.  QQ )
1211ad2antll 483 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  QQ )
1312adantr 274 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  B  e.  QQ )
14 qnegcl 9455 . . . . . . . 8  |-  ( B  e.  QQ  ->  -u B  e.  QQ )
1513, 14syl 14 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  -u B  e.  QQ )
162adantr 274 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  N  e.  QQ )
174adantr 274 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  0  <  N )
18 simpr 109 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  ( A  mod  N )  =  ( B  mod  N
) )
1910, 13, 15, 16, 17, 18modqadd1 10165 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  (
( A  +  -u B )  mod  N
)  =  ( ( B  +  -u B
)  mod  N )
)
2019ex 114 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  ->  ( ( A  +  -u B )  mod  N )  =  ( ( B  +  -u B )  mod  N
) ) )
21 simprl 521 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  ZZ )
2221zcnd 9198 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  CC )
23 simprr 522 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  ZZ )
2423zcnd 9198 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  CC )
2522, 24negsubd 8103 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( A  +  -u B )  =  ( A  -  B
) )
2625oveq1d 5797 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  +  -u B )  mod  N )  =  ( ( A  -  B )  mod  N
) )
2724negidd 8087 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( B  +  -u B )  =  0 )
2827oveq1d 5797 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( B  +  -u B )  mod  N )  =  ( 0  mod  N
) )
2926, 28eqeq12d 2155 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  +  -u B )  mod  N
)  =  ( ( B  +  -u B
)  mod  N )  <->  ( ( A  -  B
)  mod  N )  =  ( 0  mod 
N ) ) )
3020, 29sylibd 148 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  ->  ( ( A  -  B )  mod  N )  =  ( 0  mod  N ) ) )
319adantr 274 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  A  e.  QQ )
3212adantr 274 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  B  e.  QQ )
33 qsubcl 9457 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B
)  e.  QQ )
3431, 32, 33syl2anc 409 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  ( A  -  B )  e.  QQ )
35 0z 9089 . . . . . . . 8  |-  0  e.  ZZ
36 zq 9445 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
3735, 36mp1i 10 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  0  e.  QQ )
382adantr 274 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  N  e.  QQ )
394adantr 274 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  0  <  N )
40 simpr 109 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  (
( A  -  B
)  mod  N )  =  ( 0  mod 
N ) )
4134, 37, 32, 38, 39, 40modqadd1 10165 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N ) )
4241ex 114 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  ->  (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N ) ) )
4322, 24npcand 8101 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  -  B )  +  B )  =  A )
4443oveq1d 5797 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  +  B )  mod  N )  =  ( A  mod  N
) )
4524addid2d 7936 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( 0  +  B )  =  B )
4645oveq1d 5797 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
0  +  B )  mod  N )  =  ( B  mod  N
) )
4744, 46eqeq12d 2155 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N )  <->  ( A  mod  N )  =  ( B  mod  N ) ) )
4842, 47sylibd 148 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  ->  ( A  mod  N )  =  ( B  mod  N
) ) )
4930, 48impbid 128 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  <->  ( ( A  -  B )  mod 
N )  =  ( 0  mod  N ) ) )
50 zsubcl 9119 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
51 dvdsval3 11533 . . . 4  |-  ( ( N  e.  NN  /\  ( A  -  B
)  e.  ZZ )  ->  ( N  ||  ( A  -  B
)  <->  ( ( A  -  B )  mod 
N )  =  0 ) )
5250, 51sylan2 284 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( N  ||  ( A  -  B
)  <->  ( ( A  -  B )  mod 
N )  =  0 ) )
537, 49, 523bitr4d 219 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  <->  N  ||  ( A  -  B ) ) )
54533impb 1178 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  N
)  =  ( B  mod  N )  <->  N  ||  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   0cc0 7644    + caddc 7647    < clt 7824    - cmin 7957   -ucneg 7958   NNcn 8744   ZZcz 9078   QQcq 9438    mod cmo 10126    || cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-fl 10074  df-mod 10127  df-dvds 11530
This theorem is referenced by:  summodnegmod  11560  modmulconst  11561  addmodlteqALT  11593  dvdsmod  11596  congr  11817  cncongr1  11820  cncongr2  11821  crth  11936
  Copyright terms: Public domain W3C validator