ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moddvds Unicode version

Theorem moddvds 10898
Description: Two ways to say  A  ==  B (mod  N), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
moddvds  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  N
)  =  ( B  mod  N )  <->  N  ||  ( A  -  B )
) )

Proof of Theorem moddvds
StepHypRef Expression
1 nnq 9087 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
21adantr 270 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  N  e.  QQ )
3 nngt0 8419 . . . . . 6  |-  ( N  e.  NN  ->  0  <  N )
43adantr 270 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  0  <  N )
5 q0mod 9727 . . . . 5  |-  ( ( N  e.  QQ  /\  0  <  N )  -> 
( 0  mod  N
)  =  0 )
62, 4, 5syl2anc 403 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( 0  mod  N )  =  0 )
76eqeq2d 2099 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  <->  ( ( A  -  B )  mod  N )  =  0 ) )
8 zq 9080 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  A  e.  QQ )
98ad2antrl 474 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  QQ )
109adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  A  e.  QQ )
11 zq 9080 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  B  e.  QQ )
1211ad2antll 475 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  QQ )
1312adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  B  e.  QQ )
14 qnegcl 9090 . . . . . . . 8  |-  ( B  e.  QQ  ->  -u B  e.  QQ )
1513, 14syl 14 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  -u B  e.  QQ )
162adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  N  e.  QQ )
174adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  0  <  N )
18 simpr 108 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  ( A  mod  N )  =  ( B  mod  N
) )
1910, 13, 15, 16, 17, 18modqadd1 9733 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  (
( A  +  -u B )  mod  N
)  =  ( ( B  +  -u B
)  mod  N )
)
2019ex 113 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  ->  ( ( A  +  -u B )  mod  N )  =  ( ( B  +  -u B )  mod  N
) ) )
21 simprl 498 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  ZZ )
2221zcnd 8839 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  CC )
23 simprr 499 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  ZZ )
2423zcnd 8839 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  CC )
2522, 24negsubd 7778 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( A  +  -u B )  =  ( A  -  B
) )
2625oveq1d 5649 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  +  -u B )  mod  N )  =  ( ( A  -  B )  mod  N
) )
2724negidd 7762 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( B  +  -u B )  =  0 )
2827oveq1d 5649 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( B  +  -u B )  mod  N )  =  ( 0  mod  N
) )
2926, 28eqeq12d 2102 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  +  -u B )  mod  N
)  =  ( ( B  +  -u B
)  mod  N )  <->  ( ( A  -  B
)  mod  N )  =  ( 0  mod 
N ) ) )
3020, 29sylibd 147 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  ->  ( ( A  -  B )  mod  N )  =  ( 0  mod  N ) ) )
319adantr 270 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  A  e.  QQ )
3212adantr 270 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  B  e.  QQ )
33 qsubcl 9092 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B
)  e.  QQ )
3431, 32, 33syl2anc 403 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  ( A  -  B )  e.  QQ )
35 0z 8731 . . . . . . . 8  |-  0  e.  ZZ
36 zq 9080 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
3735, 36mp1i 10 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  0  e.  QQ )
382adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  N  e.  QQ )
394adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  0  <  N )
40 simpr 108 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  (
( A  -  B
)  mod  N )  =  ( 0  mod 
N ) )
4134, 37, 32, 38, 39, 40modqadd1 9733 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N ) )
4241ex 113 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  ->  (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N ) ) )
4322, 24npcand 7776 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  -  B )  +  B )  =  A )
4443oveq1d 5649 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  +  B )  mod  N )  =  ( A  mod  N
) )
4524addid2d 7611 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( 0  +  B )  =  B )
4645oveq1d 5649 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
0  +  B )  mod  N )  =  ( B  mod  N
) )
4744, 46eqeq12d 2102 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N )  <->  ( A  mod  N )  =  ( B  mod  N ) ) )
4842, 47sylibd 147 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  ->  ( A  mod  N )  =  ( B  mod  N
) ) )
4930, 48impbid 127 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  <->  ( ( A  -  B )  mod 
N )  =  ( 0  mod  N ) ) )
50 zsubcl 8761 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
51 dvdsval3 10893 . . . 4  |-  ( ( N  e.  NN  /\  ( A  -  B
)  e.  ZZ )  ->  ( N  ||  ( A  -  B
)  <->  ( ( A  -  B )  mod 
N )  =  0 ) )
5250, 51sylan2 280 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( N  ||  ( A  -  B
)  <->  ( ( A  -  B )  mod 
N )  =  0 ) )
537, 49, 523bitr4d 218 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  <->  N  ||  ( A  -  B ) ) )
54533impb 1139 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  N
)  =  ( B  mod  N )  <->  N  ||  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   class class class wbr 3837  (class class class)co 5634   0cc0 7329    + caddc 7332    < clt 7501    - cmin 7632   -ucneg 7633   NNcn 8394   ZZcz 8720   QQcq 9073    mod cmo 9694    || cdvds 10889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721  df-q 9074  df-rp 9104  df-fl 9642  df-mod 9695  df-dvds 10890
This theorem is referenced by:  summodnegmod  10920  modmulconst  10921  addmodlteqALT  10953  dvdsmod  10956  congr  11175  cncongr1  11178  cncongr2  11179  crth  11293
  Copyright terms: Public domain W3C validator