| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moddvds | Unicode version | ||
| Description: Two ways to say |
| Ref | Expression |
|---|---|
| moddvds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnq 9724 |
. . . . . 6
| |
| 2 | 1 | adantr 276 |
. . . . 5
|
| 3 | nngt0 9032 |
. . . . . 6
| |
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | q0mod 10464 |
. . . . 5
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. . . 4
|
| 7 | 6 | eqeq2d 2208 |
. . 3
|
| 8 | zq 9717 |
. . . . . . . . 9
| |
| 9 | 8 | ad2antrl 490 |
. . . . . . . 8
|
| 10 | 9 | adantr 276 |
. . . . . . 7
|
| 11 | zq 9717 |
. . . . . . . . 9
| |
| 12 | 11 | ad2antll 491 |
. . . . . . . 8
|
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | qnegcl 9727 |
. . . . . . . 8
| |
| 15 | 13, 14 | syl 14 |
. . . . . . 7
|
| 16 | 2 | adantr 276 |
. . . . . . 7
|
| 17 | 4 | adantr 276 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | 10, 13, 15, 16, 17, 18 | modqadd1 10470 |
. . . . . 6
|
| 20 | 19 | ex 115 |
. . . . 5
|
| 21 | simprl 529 |
. . . . . . . . 9
| |
| 22 | 21 | zcnd 9466 |
. . . . . . . 8
|
| 23 | simprr 531 |
. . . . . . . . 9
| |
| 24 | 23 | zcnd 9466 |
. . . . . . . 8
|
| 25 | 22, 24 | negsubd 8360 |
. . . . . . 7
|
| 26 | 25 | oveq1d 5940 |
. . . . . 6
|
| 27 | 24 | negidd 8344 |
. . . . . . 7
|
| 28 | 27 | oveq1d 5940 |
. . . . . 6
|
| 29 | 26, 28 | eqeq12d 2211 |
. . . . 5
|
| 30 | 20, 29 | sylibd 149 |
. . . 4
|
| 31 | 9 | adantr 276 |
. . . . . . . 8
|
| 32 | 12 | adantr 276 |
. . . . . . . 8
|
| 33 | qsubcl 9729 |
. . . . . . . 8
| |
| 34 | 31, 32, 33 | syl2anc 411 |
. . . . . . 7
|
| 35 | 0z 9354 |
. . . . . . . 8
| |
| 36 | zq 9717 |
. . . . . . . 8
| |
| 37 | 35, 36 | mp1i 10 |
. . . . . . 7
|
| 38 | 2 | adantr 276 |
. . . . . . 7
|
| 39 | 4 | adantr 276 |
. . . . . . 7
|
| 40 | simpr 110 |
. . . . . . 7
| |
| 41 | 34, 37, 32, 38, 39, 40 | modqadd1 10470 |
. . . . . 6
|
| 42 | 41 | ex 115 |
. . . . 5
|
| 43 | 22, 24 | npcand 8358 |
. . . . . . 7
|
| 44 | 43 | oveq1d 5940 |
. . . . . 6
|
| 45 | 24 | addlidd 8193 |
. . . . . . 7
|
| 46 | 45 | oveq1d 5940 |
. . . . . 6
|
| 47 | 44, 46 | eqeq12d 2211 |
. . . . 5
|
| 48 | 42, 47 | sylibd 149 |
. . . 4
|
| 49 | 30, 48 | impbid 129 |
. . 3
|
| 50 | zsubcl 9384 |
. . . 4
| |
| 51 | dvdsval3 11973 |
. . . 4
| |
| 52 | 50, 51 | sylan2 286 |
. . 3
|
| 53 | 7, 49, 52 | 3bitr4d 220 |
. 2
|
| 54 | 53 | 3impb 1201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-q 9711 df-rp 9746 df-fl 10377 df-mod 10432 df-dvds 11970 |
| This theorem is referenced by: modm1div 11982 summodnegmod 12004 modmulconst 12005 addmodlteqALT 12041 dvdsmod 12044 congr 12293 cncongr1 12296 cncongr2 12297 crth 12417 eulerthlemh 12424 eulerthlemth 12425 prmdiv 12428 prmdiveq 12429 odzcllem 12436 odzdvds 12439 odzphi 12440 pockthlem 12550 4sqlem11 12595 4sqlem12 12596 znf1o 14283 wilthlem1 15300 lgslem1 15325 lgsmod 15351 lgsdirprm 15359 lgseisenlem2 15396 lgseisenlem3 15397 lgseisenlem4 15398 m1lgs 15410 |
| Copyright terms: Public domain | W3C validator |