| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moddvds | Unicode version | ||
| Description: Two ways to say |
| Ref | Expression |
|---|---|
| moddvds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnq 9796 |
. . . . . 6
| |
| 2 | 1 | adantr 276 |
. . . . 5
|
| 3 | nngt0 9103 |
. . . . . 6
| |
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | q0mod 10544 |
. . . . 5
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. . . 4
|
| 7 | 6 | eqeq2d 2221 |
. . 3
|
| 8 | zq 9789 |
. . . . . . . . 9
| |
| 9 | 8 | ad2antrl 490 |
. . . . . . . 8
|
| 10 | 9 | adantr 276 |
. . . . . . 7
|
| 11 | zq 9789 |
. . . . . . . . 9
| |
| 12 | 11 | ad2antll 491 |
. . . . . . . 8
|
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | qnegcl 9799 |
. . . . . . . 8
| |
| 15 | 13, 14 | syl 14 |
. . . . . . 7
|
| 16 | 2 | adantr 276 |
. . . . . . 7
|
| 17 | 4 | adantr 276 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | 10, 13, 15, 16, 17, 18 | modqadd1 10550 |
. . . . . 6
|
| 20 | 19 | ex 115 |
. . . . 5
|
| 21 | simprl 529 |
. . . . . . . . 9
| |
| 22 | 21 | zcnd 9538 |
. . . . . . . 8
|
| 23 | simprr 531 |
. . . . . . . . 9
| |
| 24 | 23 | zcnd 9538 |
. . . . . . . 8
|
| 25 | 22, 24 | negsubd 8431 |
. . . . . . 7
|
| 26 | 25 | oveq1d 5989 |
. . . . . 6
|
| 27 | 24 | negidd 8415 |
. . . . . . 7
|
| 28 | 27 | oveq1d 5989 |
. . . . . 6
|
| 29 | 26, 28 | eqeq12d 2224 |
. . . . 5
|
| 30 | 20, 29 | sylibd 149 |
. . . 4
|
| 31 | 9 | adantr 276 |
. . . . . . . 8
|
| 32 | 12 | adantr 276 |
. . . . . . . 8
|
| 33 | qsubcl 9801 |
. . . . . . . 8
| |
| 34 | 31, 32, 33 | syl2anc 411 |
. . . . . . 7
|
| 35 | 0z 9425 |
. . . . . . . 8
| |
| 36 | zq 9789 |
. . . . . . . 8
| |
| 37 | 35, 36 | mp1i 10 |
. . . . . . 7
|
| 38 | 2 | adantr 276 |
. . . . . . 7
|
| 39 | 4 | adantr 276 |
. . . . . . 7
|
| 40 | simpr 110 |
. . . . . . 7
| |
| 41 | 34, 37, 32, 38, 39, 40 | modqadd1 10550 |
. . . . . 6
|
| 42 | 41 | ex 115 |
. . . . 5
|
| 43 | 22, 24 | npcand 8429 |
. . . . . . 7
|
| 44 | 43 | oveq1d 5989 |
. . . . . 6
|
| 45 | 24 | addlidd 8264 |
. . . . . . 7
|
| 46 | 45 | oveq1d 5989 |
. . . . . 6
|
| 47 | 44, 46 | eqeq12d 2224 |
. . . . 5
|
| 48 | 42, 47 | sylibd 149 |
. . . 4
|
| 49 | 30, 48 | impbid 129 |
. . 3
|
| 50 | zsubcl 9455 |
. . . 4
| |
| 51 | dvdsval3 12268 |
. . . 4
| |
| 52 | 50, 51 | sylan2 286 |
. . 3
|
| 53 | 7, 49, 52 | 3bitr4d 220 |
. 2
|
| 54 | 53 | 3impb 1204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-n0 9338 df-z 9415 df-q 9783 df-rp 9818 df-fl 10457 df-mod 10512 df-dvds 12265 |
| This theorem is referenced by: modm1div 12277 summodnegmod 12299 modmulconst 12300 addmodlteqALT 12336 dvdsmod 12339 congr 12588 cncongr1 12591 cncongr2 12592 crth 12712 eulerthlemh 12719 eulerthlemth 12720 prmdiv 12723 prmdiveq 12724 odzcllem 12731 odzdvds 12734 odzphi 12735 pockthlem 12845 4sqlem11 12890 4sqlem12 12891 znf1o 14580 wilthlem1 15619 lgslem1 15644 lgsmod 15670 lgsdirprm 15678 lgseisenlem2 15715 lgseisenlem3 15716 lgseisenlem4 15717 m1lgs 15729 |
| Copyright terms: Public domain | W3C validator |