| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moddvds | Unicode version | ||
| Description: Two ways to say |
| Ref | Expression |
|---|---|
| moddvds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnq 9710 |
. . . . . 6
| |
| 2 | 1 | adantr 276 |
. . . . 5
|
| 3 | nngt0 9018 |
. . . . . 6
| |
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | q0mod 10450 |
. . . . 5
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. . . 4
|
| 7 | 6 | eqeq2d 2208 |
. . 3
|
| 8 | zq 9703 |
. . . . . . . . 9
| |
| 9 | 8 | ad2antrl 490 |
. . . . . . . 8
|
| 10 | 9 | adantr 276 |
. . . . . . 7
|
| 11 | zq 9703 |
. . . . . . . . 9
| |
| 12 | 11 | ad2antll 491 |
. . . . . . . 8
|
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | qnegcl 9713 |
. . . . . . . 8
| |
| 15 | 13, 14 | syl 14 |
. . . . . . 7
|
| 16 | 2 | adantr 276 |
. . . . . . 7
|
| 17 | 4 | adantr 276 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | 10, 13, 15, 16, 17, 18 | modqadd1 10456 |
. . . . . 6
|
| 20 | 19 | ex 115 |
. . . . 5
|
| 21 | simprl 529 |
. . . . . . . . 9
| |
| 22 | 21 | zcnd 9452 |
. . . . . . . 8
|
| 23 | simprr 531 |
. . . . . . . . 9
| |
| 24 | 23 | zcnd 9452 |
. . . . . . . 8
|
| 25 | 22, 24 | negsubd 8346 |
. . . . . . 7
|
| 26 | 25 | oveq1d 5938 |
. . . . . 6
|
| 27 | 24 | negidd 8330 |
. . . . . . 7
|
| 28 | 27 | oveq1d 5938 |
. . . . . 6
|
| 29 | 26, 28 | eqeq12d 2211 |
. . . . 5
|
| 30 | 20, 29 | sylibd 149 |
. . . 4
|
| 31 | 9 | adantr 276 |
. . . . . . . 8
|
| 32 | 12 | adantr 276 |
. . . . . . . 8
|
| 33 | qsubcl 9715 |
. . . . . . . 8
| |
| 34 | 31, 32, 33 | syl2anc 411 |
. . . . . . 7
|
| 35 | 0z 9340 |
. . . . . . . 8
| |
| 36 | zq 9703 |
. . . . . . . 8
| |
| 37 | 35, 36 | mp1i 10 |
. . . . . . 7
|
| 38 | 2 | adantr 276 |
. . . . . . 7
|
| 39 | 4 | adantr 276 |
. . . . . . 7
|
| 40 | simpr 110 |
. . . . . . 7
| |
| 41 | 34, 37, 32, 38, 39, 40 | modqadd1 10456 |
. . . . . 6
|
| 42 | 41 | ex 115 |
. . . . 5
|
| 43 | 22, 24 | npcand 8344 |
. . . . . . 7
|
| 44 | 43 | oveq1d 5938 |
. . . . . 6
|
| 45 | 24 | addlidd 8179 |
. . . . . . 7
|
| 46 | 45 | oveq1d 5938 |
. . . . . 6
|
| 47 | 44, 46 | eqeq12d 2211 |
. . . . 5
|
| 48 | 42, 47 | sylibd 149 |
. . . 4
|
| 49 | 30, 48 | impbid 129 |
. . 3
|
| 50 | zsubcl 9370 |
. . . 4
| |
| 51 | dvdsval3 11959 |
. . . 4
| |
| 52 | 50, 51 | sylan2 286 |
. . 3
|
| 53 | 7, 49, 52 | 3bitr4d 220 |
. 2
|
| 54 | 53 | 3impb 1201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-n0 9253 df-z 9330 df-q 9697 df-rp 9732 df-fl 10363 df-mod 10418 df-dvds 11956 |
| This theorem is referenced by: modm1div 11968 summodnegmod 11990 modmulconst 11991 addmodlteqALT 12027 dvdsmod 12030 congr 12279 cncongr1 12282 cncongr2 12283 crth 12403 eulerthlemh 12410 eulerthlemth 12411 prmdiv 12414 prmdiveq 12415 odzcllem 12422 odzdvds 12425 odzphi 12426 pockthlem 12536 4sqlem11 12581 4sqlem12 12582 znf1o 14233 wilthlem1 15242 lgslem1 15267 lgsmod 15293 lgsdirprm 15301 lgseisenlem2 15338 lgseisenlem3 15339 lgseisenlem4 15340 m1lgs 15352 |
| Copyright terms: Public domain | W3C validator |