| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moddvds | Unicode version | ||
| Description: Two ways to say |
| Ref | Expression |
|---|---|
| moddvds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnq 9726 |
. . . . . 6
| |
| 2 | 1 | adantr 276 |
. . . . 5
|
| 3 | nngt0 9034 |
. . . . . 6
| |
| 4 | 3 | adantr 276 |
. . . . 5
|
| 5 | q0mod 10466 |
. . . . 5
| |
| 6 | 2, 4, 5 | syl2anc 411 |
. . . 4
|
| 7 | 6 | eqeq2d 2208 |
. . 3
|
| 8 | zq 9719 |
. . . . . . . . 9
| |
| 9 | 8 | ad2antrl 490 |
. . . . . . . 8
|
| 10 | 9 | adantr 276 |
. . . . . . 7
|
| 11 | zq 9719 |
. . . . . . . . 9
| |
| 12 | 11 | ad2antll 491 |
. . . . . . . 8
|
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | qnegcl 9729 |
. . . . . . . 8
| |
| 15 | 13, 14 | syl 14 |
. . . . . . 7
|
| 16 | 2 | adantr 276 |
. . . . . . 7
|
| 17 | 4 | adantr 276 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | 10, 13, 15, 16, 17, 18 | modqadd1 10472 |
. . . . . 6
|
| 20 | 19 | ex 115 |
. . . . 5
|
| 21 | simprl 529 |
. . . . . . . . 9
| |
| 22 | 21 | zcnd 9468 |
. . . . . . . 8
|
| 23 | simprr 531 |
. . . . . . . . 9
| |
| 24 | 23 | zcnd 9468 |
. . . . . . . 8
|
| 25 | 22, 24 | negsubd 8362 |
. . . . . . 7
|
| 26 | 25 | oveq1d 5940 |
. . . . . 6
|
| 27 | 24 | negidd 8346 |
. . . . . . 7
|
| 28 | 27 | oveq1d 5940 |
. . . . . 6
|
| 29 | 26, 28 | eqeq12d 2211 |
. . . . 5
|
| 30 | 20, 29 | sylibd 149 |
. . . 4
|
| 31 | 9 | adantr 276 |
. . . . . . . 8
|
| 32 | 12 | adantr 276 |
. . . . . . . 8
|
| 33 | qsubcl 9731 |
. . . . . . . 8
| |
| 34 | 31, 32, 33 | syl2anc 411 |
. . . . . . 7
|
| 35 | 0z 9356 |
. . . . . . . 8
| |
| 36 | zq 9719 |
. . . . . . . 8
| |
| 37 | 35, 36 | mp1i 10 |
. . . . . . 7
|
| 38 | 2 | adantr 276 |
. . . . . . 7
|
| 39 | 4 | adantr 276 |
. . . . . . 7
|
| 40 | simpr 110 |
. . . . . . 7
| |
| 41 | 34, 37, 32, 38, 39, 40 | modqadd1 10472 |
. . . . . 6
|
| 42 | 41 | ex 115 |
. . . . 5
|
| 43 | 22, 24 | npcand 8360 |
. . . . . . 7
|
| 44 | 43 | oveq1d 5940 |
. . . . . 6
|
| 45 | 24 | addlidd 8195 |
. . . . . . 7
|
| 46 | 45 | oveq1d 5940 |
. . . . . 6
|
| 47 | 44, 46 | eqeq12d 2211 |
. . . . 5
|
| 48 | 42, 47 | sylibd 149 |
. . . 4
|
| 49 | 30, 48 | impbid 129 |
. . 3
|
| 50 | zsubcl 9386 |
. . . 4
| |
| 51 | dvdsval3 11975 |
. . . 4
| |
| 52 | 50, 51 | sylan2 286 |
. . 3
|
| 53 | 7, 49, 52 | 3bitr4d 220 |
. 2
|
| 54 | 53 | 3impb 1201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-n0 9269 df-z 9346 df-q 9713 df-rp 9748 df-fl 10379 df-mod 10434 df-dvds 11972 |
| This theorem is referenced by: modm1div 11984 summodnegmod 12006 modmulconst 12007 addmodlteqALT 12043 dvdsmod 12046 congr 12295 cncongr1 12298 cncongr2 12299 crth 12419 eulerthlemh 12426 eulerthlemth 12427 prmdiv 12430 prmdiveq 12431 odzcllem 12438 odzdvds 12441 odzphi 12442 pockthlem 12552 4sqlem11 12597 4sqlem12 12598 znf1o 14285 wilthlem1 15302 lgslem1 15327 lgsmod 15353 lgsdirprm 15361 lgseisenlem2 15398 lgseisenlem3 15399 lgseisenlem4 15400 m1lgs 15412 |
| Copyright terms: Public domain | W3C validator |