ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moddvds Unicode version

Theorem moddvds 12318
Description: Two ways to say  A  ==  B (mod  N), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
moddvds  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  N
)  =  ( B  mod  N )  <->  N  ||  ( A  -  B )
) )

Proof of Theorem moddvds
StepHypRef Expression
1 nnq 9836 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
21adantr 276 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  N  e.  QQ )
3 nngt0 9143 . . . . . 6  |-  ( N  e.  NN  ->  0  <  N )
43adantr 276 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  0  <  N )
5 q0mod 10585 . . . . 5  |-  ( ( N  e.  QQ  /\  0  <  N )  -> 
( 0  mod  N
)  =  0 )
62, 4, 5syl2anc 411 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( 0  mod  N )  =  0 )
76eqeq2d 2241 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  <->  ( ( A  -  B )  mod  N )  =  0 ) )
8 zq 9829 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  A  e.  QQ )
98ad2antrl 490 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  QQ )
109adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  A  e.  QQ )
11 zq 9829 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  B  e.  QQ )
1211ad2antll 491 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  QQ )
1312adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  B  e.  QQ )
14 qnegcl 9839 . . . . . . . 8  |-  ( B  e.  QQ  ->  -u B  e.  QQ )
1513, 14syl 14 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  -u B  e.  QQ )
162adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  N  e.  QQ )
174adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  0  <  N )
18 simpr 110 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  ( A  mod  N )  =  ( B  mod  N
) )
1910, 13, 15, 16, 17, 18modqadd1 10591 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  (
( A  +  -u B )  mod  N
)  =  ( ( B  +  -u B
)  mod  N )
)
2019ex 115 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  ->  ( ( A  +  -u B )  mod  N )  =  ( ( B  +  -u B )  mod  N
) ) )
21 simprl 529 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  ZZ )
2221zcnd 9578 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  CC )
23 simprr 531 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  ZZ )
2423zcnd 9578 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  CC )
2522, 24negsubd 8471 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( A  +  -u B )  =  ( A  -  B
) )
2625oveq1d 6022 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  +  -u B )  mod  N )  =  ( ( A  -  B )  mod  N
) )
2724negidd 8455 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( B  +  -u B )  =  0 )
2827oveq1d 6022 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( B  +  -u B )  mod  N )  =  ( 0  mod  N
) )
2926, 28eqeq12d 2244 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  +  -u B )  mod  N
)  =  ( ( B  +  -u B
)  mod  N )  <->  ( ( A  -  B
)  mod  N )  =  ( 0  mod 
N ) ) )
3020, 29sylibd 149 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  ->  ( ( A  -  B )  mod  N )  =  ( 0  mod  N ) ) )
319adantr 276 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  A  e.  QQ )
3212adantr 276 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  B  e.  QQ )
33 qsubcl 9841 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B
)  e.  QQ )
3431, 32, 33syl2anc 411 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  ( A  -  B )  e.  QQ )
35 0z 9465 . . . . . . . 8  |-  0  e.  ZZ
36 zq 9829 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
3735, 36mp1i 10 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  0  e.  QQ )
382adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  N  e.  QQ )
394adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  0  <  N )
40 simpr 110 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  (
( A  -  B
)  mod  N )  =  ( 0  mod 
N ) )
4134, 37, 32, 38, 39, 40modqadd1 10591 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N ) )
4241ex 115 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  ->  (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N ) ) )
4322, 24npcand 8469 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  -  B )  +  B )  =  A )
4443oveq1d 6022 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  +  B )  mod  N )  =  ( A  mod  N
) )
4524addlidd 8304 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( 0  +  B )  =  B )
4645oveq1d 6022 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
0  +  B )  mod  N )  =  ( B  mod  N
) )
4744, 46eqeq12d 2244 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N )  <->  ( A  mod  N )  =  ( B  mod  N ) ) )
4842, 47sylibd 149 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  ->  ( A  mod  N )  =  ( B  mod  N
) ) )
4930, 48impbid 129 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  <->  ( ( A  -  B )  mod 
N )  =  ( 0  mod  N ) ) )
50 zsubcl 9495 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
51 dvdsval3 12310 . . . 4  |-  ( ( N  e.  NN  /\  ( A  -  B
)  e.  ZZ )  ->  ( N  ||  ( A  -  B
)  <->  ( ( A  -  B )  mod 
N )  =  0 ) )
5250, 51sylan2 286 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( N  ||  ( A  -  B
)  <->  ( ( A  -  B )  mod 
N )  =  0 ) )
537, 49, 523bitr4d 220 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  <->  N  ||  ( A  -  B ) ) )
54533impb 1223 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  N
)  =  ( B  mod  N )  <->  N  ||  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6007   0cc0 8007    + caddc 8010    < clt 8189    - cmin 8325   -ucneg 8326   NNcn 9118   ZZcz 9454   QQcq 9822    mod cmo 10552    || cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-n0 9378  df-z 9455  df-q 9823  df-rp 9858  df-fl 10498  df-mod 10553  df-dvds 12307
This theorem is referenced by:  modm1div  12319  summodnegmod  12341  modmulconst  12342  addmodlteqALT  12378  dvdsmod  12381  congr  12630  cncongr1  12633  cncongr2  12634  crth  12754  eulerthlemh  12761  eulerthlemth  12762  prmdiv  12765  prmdiveq  12766  odzcllem  12773  odzdvds  12776  odzphi  12777  pockthlem  12887  4sqlem11  12932  4sqlem12  12933  znf1o  14623  wilthlem1  15662  lgslem1  15687  lgsmod  15713  lgsdirprm  15721  lgseisenlem2  15758  lgseisenlem3  15759  lgseisenlem4  15760  m1lgs  15772
  Copyright terms: Public domain W3C validator