Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moddvds | Unicode version |
Description: Two ways to say (mod ), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
moddvds |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnq 9567 | . . . . . 6 | |
2 | 1 | adantr 274 | . . . . 5 |
3 | nngt0 8878 | . . . . . 6 | |
4 | 3 | adantr 274 | . . . . 5 |
5 | q0mod 10286 | . . . . 5 | |
6 | 2, 4, 5 | syl2anc 409 | . . . 4 |
7 | 6 | eqeq2d 2177 | . . 3 |
8 | zq 9560 | . . . . . . . . 9 | |
9 | 8 | ad2antrl 482 | . . . . . . . 8 |
10 | 9 | adantr 274 | . . . . . . 7 |
11 | zq 9560 | . . . . . . . . 9 | |
12 | 11 | ad2antll 483 | . . . . . . . 8 |
13 | 12 | adantr 274 | . . . . . . 7 |
14 | qnegcl 9570 | . . . . . . . 8 | |
15 | 13, 14 | syl 14 | . . . . . . 7 |
16 | 2 | adantr 274 | . . . . . . 7 |
17 | 4 | adantr 274 | . . . . . . 7 |
18 | simpr 109 | . . . . . . 7 | |
19 | 10, 13, 15, 16, 17, 18 | modqadd1 10292 | . . . . . 6 |
20 | 19 | ex 114 | . . . . 5 |
21 | simprl 521 | . . . . . . . . 9 | |
22 | 21 | zcnd 9310 | . . . . . . . 8 |
23 | simprr 522 | . . . . . . . . 9 | |
24 | 23 | zcnd 9310 | . . . . . . . 8 |
25 | 22, 24 | negsubd 8211 | . . . . . . 7 |
26 | 25 | oveq1d 5856 | . . . . . 6 |
27 | 24 | negidd 8195 | . . . . . . 7 |
28 | 27 | oveq1d 5856 | . . . . . 6 |
29 | 26, 28 | eqeq12d 2180 | . . . . 5 |
30 | 20, 29 | sylibd 148 | . . . 4 |
31 | 9 | adantr 274 | . . . . . . . 8 |
32 | 12 | adantr 274 | . . . . . . . 8 |
33 | qsubcl 9572 | . . . . . . . 8 | |
34 | 31, 32, 33 | syl2anc 409 | . . . . . . 7 |
35 | 0z 9198 | . . . . . . . 8 | |
36 | zq 9560 | . . . . . . . 8 | |
37 | 35, 36 | mp1i 10 | . . . . . . 7 |
38 | 2 | adantr 274 | . . . . . . 7 |
39 | 4 | adantr 274 | . . . . . . 7 |
40 | simpr 109 | . . . . . . 7 | |
41 | 34, 37, 32, 38, 39, 40 | modqadd1 10292 | . . . . . 6 |
42 | 41 | ex 114 | . . . . 5 |
43 | 22, 24 | npcand 8209 | . . . . . . 7 |
44 | 43 | oveq1d 5856 | . . . . . 6 |
45 | 24 | addid2d 8044 | . . . . . . 7 |
46 | 45 | oveq1d 5856 | . . . . . 6 |
47 | 44, 46 | eqeq12d 2180 | . . . . 5 |
48 | 42, 47 | sylibd 148 | . . . 4 |
49 | 30, 48 | impbid 128 | . . 3 |
50 | zsubcl 9228 | . . . 4 | |
51 | dvdsval3 11727 | . . . 4 | |
52 | 50, 51 | sylan2 284 | . . 3 |
53 | 7, 49, 52 | 3bitr4d 219 | . 2 |
54 | 53 | 3impb 1189 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 class class class wbr 3981 (class class class)co 5841 cc0 7749 caddc 7752 clt 7929 cmin 8065 cneg 8066 cn 8853 cz 9187 cq 9553 cmo 10253 cdvds 11723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-n0 9111 df-z 9188 df-q 9554 df-rp 9586 df-fl 10201 df-mod 10254 df-dvds 11724 |
This theorem is referenced by: modm1div 11736 summodnegmod 11758 modmulconst 11759 addmodlteqALT 11793 dvdsmod 11796 congr 12028 cncongr1 12031 cncongr2 12032 crth 12152 eulerthlemh 12159 eulerthlemth 12160 prmdiv 12163 prmdiveq 12164 odzcllem 12170 odzdvds 12173 odzphi 12174 pockthlem 12282 lgslem1 13501 lgsmod 13527 lgsdirprm 13535 |
Copyright terms: Public domain | W3C validator |